
Content-adaptive Lenticular Prints
Supplemental Material

James Tompkin
Disney Research/MPI für Informatik

Simon Heinzle
Disney Research Zurich

Jan Kautz
University College London

Wojciech Matusik
MIT CSAIL

This document supports the main paper by providing further expla-
nations, results, a worked example, and detailed pseudocode for our
optimization techniques. Section 1 explains our lens optimization
in detail, which determines optical aspherical lens shapes and com-
plementary focal surfaces given an input lens width size in pixels
and the field of view. Section 2 presents our discrete light field op-
timization, which places pre-determined lenses of set widths to op-
timally trade spatial and angular resolution over a light field given
the desired physical dimensions of the output display. This includes
a worked example using a simple formalization. Section 3 explains
further the spatial vs. angular weighting. Section 4 explains further
the multi-scanline solve. Section 5 provides further light field re-
sult comparisons with Figures 9, 10, 11, and 12. Finally, Section
6 contains pseudocode for the lens and discrete lens configuration
optimizations.

1 Lens Optimization

The generated display is a series of scanlines, each split into a series
of lenses. The physical size of the display and the size of a pixel
determines the number of pixels in a scanline. The discrete opti-
mization (Section 2) computes a set of lens widths in pixels (and
assigns color to these pixels) such that the spatial and angular reso-
lution of the input light field is optimally distributed. Given this lens
width set, the lens optimization generates a refractive lens surface
and an image surface which best focuses the output light field.

1.1 Plano-Convex Lenses

We begin by describing an optimization for 1D plano-convex lenses
(Figure 4, main paper, left and center-left). For each lens, we have
as input constants:

1. Lens width W , in pixels.

2. Field of view V , in degrees.

3. Refractive index of lens material.

Our strategy is to posit a number of viewing positions over the field
of view equal to the number of pixels underneath the lens. From
these viewing positions, we ray trace candidate lens surfaces given
a parameterized lens surface model, refract the rays, and compute
where they would intersect an image surface some focal distance
from the lens surface. We split this lens surface into pixels, with
each viewing position mapping to a target pixel. From this, we can
compute an error function: the distance of each incoming ray from
its target pixel center.

Figure 1 shows an example candidate lens surface and image sur-
face at a focal distance. The rays incoming to this lens are dis-
tributed across 5 color-coded positions (purple, blue, green, yellow,
and red). Each ray position is intended to view one pixel. The error
function is then computed as the mean squared error from all dis-
tances of the ray/image surface intersections from the center of the
ray’s assigned pixel.

With our error function defined, we now need to optimize over our
parameters. One of these will be the focal distance, and the others
will describe our lens surface shape.

MSE = 0.064

Aspherical lens

Planar image

F
o
ca

l
d
is

ta
n
ce

5 pixel

width

Figure 1: Plano-convex lens optimization example.

The lens surface is defined as [Pruss et al. 2008; Wikipedia a]:

z(r) =
r2

R
(

1+
√

1− (1+κ) r2

R2

) +α1r2+α2r4+α3r6+ · · · , (1)

where the optic axis lies in the z direction, R is the radius of curva-
ture (if α terms are 0), and κ is the conic constant which determines
the type of conic section generated, with hyperbolas when κ <−1,
parabolas when κ = −1, spheres when κ = 0, to ellipses when
−1 < κ < 0 (a prolate spheroid) and κ > 0 (an oblate spheroid).
We refer the reader to [Conics and Aberrations], Figure 23, for
an elegant diagram exploring these relationships. Figure 2 shows
a chord generated by our system, with accurate normals generated
for all incoming ray points of intersection.

Figure 2: Aspherical chord. Green lines are normals computed at
the red points of ray intersection.

Thus, the parameters we wish to optimize are:

1. R, the radius of curvature.

2. κ , the conic constant.

3. F , the focal distance.

with input constants W , the lens width, V , the field of view, and n,
the refractive index of the lens material. In our case, using Objet
VeroClear material, n = 1.47. We optimize these parameters using
unconstrained nonlinear optimization. For our optimization, we do
not use the α distortion terms, as these terms have only a tiny im-
pact on the overall error while increasing the optimization space
unnecessary.

We take our initial values from Kweon and Kim [Kweon and Kim
2007]. R0 = (1− n)/(n ∗ F0), assuming the index of refraction
(IOR) = 1 for air ([Kweon and Kim 2007], Equ. 27). κ0 =−(1/n)2,
again assuming IOR =1 for air ([Kweon and Kim 2007], Equ.
28). These values are optimal only for the center view and not
for the whole field of view, thus requiring an optimization step.
For the focal length, we use a simple field-of-view conversion:
F0 =W/(2∗ tanV), which assumes a pinhole model.

It is also possible to use the Lensmaker’s equation [Wikipedia b] as
an initial approximation for F . For plano-convex lenses, we would
set the second radius to infinity, so:

F0 = R0/(n−1) (2)

However, this is not optimal for any views and is only an approxi-
mation, whereas Kweon and Kim [Kweon and Kim 2007] is at least
optimal for optical-axis-aligned views.

Alternative error functions: Other error functions are possible.
One example: given that a pixel has a non-zero width, we can set the
ray error to be zero so long as the ray doesn’t stray into a neighbor-
ing pixel. This allows us to additionally minimize the focal distance
F to create as thin a display as possible, whereas the center-based
error minimizes overall crosstalk.

1.2 Lenses with non-planar image surfaces

As can be seen in Figure 1 in this document, and Figure 4 in the
main paper, the optimal focusing distance across all viewing direc-
tions does not necessarily lie on a single plane.

Given the simple ray tracing setup described, we can form a curved
back plane to match a given aspheric lens surface which further
reduces the mean square error of ray intersections. Each viewing
position defines a bundle of rays, and depending on the incoming
angle these will exhibit a certain coma. If we compute the point of
intersection between each pair of rays in the bundle, and then take
the mean position of all these intersections, we will find a point
that is the point of best focus (in least-squares sense). We can con-
struct surfaces from these points by varying the incoming viewing
position and fitting a curve to the series of points.

Further, the shape of the back pixel surface can be optimized jointly
with the lens surface within the same unconstrained non-linear op-
timization. Given the simple ray tracing optimization described in
the previous section, we modify the procedure as follows:

• To achieve axis-aligned pixel patches, each back pixel i is as-
signed its own independent focal length Fi. Subsequently, the
optimization parameter F (same focal length for all pixels) is
substituted with the optimization parameter F = [F1,F2, ,Fn]
(individual focal length for each pixel), where n is the num-
ber of pixels. The ray-tracing routine then intersects with the

staircase surface rather than with the even surface, as illus-
trated in Figure 4 in the main paper.

• To achieve the linear approximation of a curved surface, we
change the optimization parameter to F = [F1, ,Fn+1]. Then,
the pixel surface of pixel i is described by the linear patch
defined by points Fi and Fi+1, see Figure 4 in the main paper.

Section 6.1 provides pseudocode for the plano-convex optimiza-
tion.

2 Discrete Light Field Optimization

spatial support

s

u

angular
support

Light field sampling pattern

Figure 3: EPI slice regular sampling, showing fix-sized lenses cov-
ering the light field section.

Our discrete optimization takes as input an epipolar image (EPI)
slice from a light field. Each slice represents a scanline in the final
display. The EPI slice has, for its s axis, the spatial content, and
for its u axis, the angular content (Figure 3). Each column (dashed
black) represents one lens. Each box within the lens containing a
circle is one pixel in the output image, representing the different
view positions in space that this would generate with a lens on top.
In this example, each view contains different content — rotating
the display in front of your eyes would produce a display which
switches from red to yellow to green to blue.

Low spatial, high angular

{{
Input scene

EPI (line 192)
u

s

High spatial, low angular
{

High spatial, low angular

Figure 4: EPI slice showing different spatial and angular content
within a light field.

However, different light field content induces different lens/pixel
sampling requirements. In Figure 4, we see a real example. The
plot axes are the same, u and s. The crux of understanding how we
can adaptively sample comes with the intuition that a pixel in the
display output has a fixed area in this u,s plot.

With no lens, an array of pixels can only provide one view. When
trading off angular and spatial resolution, this is the maximum spa-
tial resolution and the minimal angular resolution. Overlaid on our
u,s plot, these single output pixels would be unit columns — all the
u pixels are merged into one output pixels, giving minimal angu-
lar resolution. The color assigned to the output pixels is the mean
color of all input pixels underneath the u extent, and so the unit
wide column (no lens) then blurs content in the u direction.

If we now look at a lens with 20 pixels, we see the opposite sit-
uation. Now, our lens would be a 20 unit column in width. This
lens has 20 pixels, each directed by refraction to different view di-
rections in space, and so the u dimension is partitioned into 20 sec-
tions to provide good angular sampling. By the fact that a pixel
has constant area in the u,s plot, each of these output pixels has
horizontal extent and is 20 units wide (e.g., Figure 2 main paper).
Again, the output color assigned is the mean color of all input pix-
els underneath the u,s extent of that output pixel, an so each pixel
blurs content in the s direction.

Our goal is to analyze the light field and consider which lenses are
best suited to which part of this EPI image light field slice. We
wish to find a configuration of lenses which optimally samples the
content to minimize the difference between the input and output
light fields.

The general strategy is straightforward: place all lenses in all pos-
sible configurations, compare the input and output light fields, and
see which configuration produces the least error. However, even for
small numbers of lenses, a brute-force computation method soon
becomes intractable. Instead, we apply a dynamic programming
approach, which works recursively and stores previous results to
cut down on the number of possible lens configurations. We will
demonstrate this with a worked example, before presenting pseu-
docode (Section 6.2).

2.1 General Case

Notation:

• Input EPI slice EPII with width W .

• Output EPI slice EPIO with width W .

• Candidate lens set L with widths Lw, where L[y] denotes
the y-th lens in the candidate lens set.

• Optimal lens set LO.

• Data table T .

Operations:

• EPI[1 : n] means to take a subset of the EPI slice along
the s axis.

• applyLens(x,L[y]) means to apply the candidate lens
L[y] at s axis position x in EPII . Applying the lens
means computing the color of each of the lens’ con-
stituent pixels by taking a mean of EPII under that
pixel’s extent. This generates a candidate EPIO in the
range [x : x+Lw[y]].

• error(x) means to compare x by L2 distance to EPII .

We begin our approach by first applying the smallest lens to cover
the right-most part of the slice:

applyLens(W −Lw[1],L[1]) (3)

Comparing against EPII for this region, we generate an error for
placing this lens in that position:

error(applyLens(W −Lw[1],L[1])) (4)

The hypothetical remainder of the slice, from 0 to the lens just
placed at the right-most part of the slice, is EPIO[0 : W − Lw[1]].
At this stage, error(EPIO[0 : W −Lw[1]]) is unknown as no mini-
mal error has been computed; but, the total error for placing L[1] in

the right-most position would be:

error(EPIO[0 : W −Lw[1]])+ error(applyLens(W −Lw[1],L[1]))
(5)

Now, let’s do the same for the second smallest lens, applying it in
the right-most position possible in the input slice. The error for this
placement is the error of applying the lens, plus the hypothetical
error of the rest of the slice:

error(EPIO[0 : W −Lw[2]])+ error(applyLens(W −Lw[2],L[2]))
(6)

Let E(q) = error(EPIO[0 : W − Lw[q]]) + error(applyLens(W −
Lw[q],L(q))). Then, if we suppose E(q) for all lenses in L, plac-
ing each at the right-most position possible, we come to form the
hypothetical error for LO applied to EPII :

LOerror = min(E(1),E(2), . . . ,E(n)); (7)

Given this, we can generate an algorithm which recurses to solve
for every EPIO[0 : W − Lw[n]]. The algorithm becomes dynamic
programming when we start adding computed errors to T . We want
to store the lens combinations and their produced errors for all x
positions along the s axis.

For instance, during the recursion, if we know that the least erro-
neous way to apply lenses to EPIO[0 : 3] is with a lens of width
3 (i.e., LO = {3}, rather than with LO = {1,1,1}, LO = {1,2}, or
LO = {2,1}), then we never again need to compute lens configu-
rations for this portion of the slice and can just look up the error.
This significantly cuts down on the number of lens combinations
that need to be tested to find the one with the least error.

2.2 Worked Example

We describe this worked example using the formulation from the
previous section, with the help of Figure 5 for visualization. In each
recursion step, all possible lenses from a discrete set of candidates
are placed on one side of the input light field (shaded in gray). Then,
the same procedure is evaluated recursively on the remaining subset
of the light field not covered by the lens (shaded in blue). The
recursion stops as soon as the width of the remaining subset is equal
or smaller to the smallest candidate lens (shown in row 5). Then,
the error induced by the current lens placement is propagated up,
and in each recursion stage the lens arrangement with the lowest
error is selected (green boxes).

Level 5: We start with EPII slice width W = 5 and a lens set L
with widths Lw = {1,2,4}. Then:

LOerror = min(error(EPIO[0 : 4])+ error(applyLens(4,L[1])),
error(EPIO[0 : 3])+ error(applyLens(3,L[2])),
error(EPIO[0 : 1])+ error(applyLens(1,L[3]))).

We can directly compute the error terms for applying the lenses, but
we need to recurse to compute error(EPIO[0 : 4]), error(EPIO[0 :
3]), and error(EPIO[0 : 1]) .

Level 4: error(EPIO[0 : 4])

LOerror = min(error(EPIO[0 : 3])+ error(applyLens(3,L[1])),
error(EPIO[0 : 2])+ error(applyLens(2,L[2])),
error(applyLens(0,L[3]))).

Again, we can directly compute the applyLens terms, but must re-
curse for error(EPIO[0 : 3]). At this level, we see that there is no
further error for L[3] — the EPII subset is 4 wide, and L[3] is 4
wide. Now, we need to recurse again.

1 2 4

1 2 4

1 2

1 2

1

2 4

2

2

2

4

1 2 4

1 2 4

1 2

4

2

2

1 2

1

1

22 1

12 2

44 112

2

2
Re

cu
rs

e
do

w
n

EPIO[0:3]

EPIO[0:2]

EPIO[0:5]

EPIO[0:4]

EPIO[0:1]

EPIO[0:3]

EPIO[0:2]

EPIO[0:5]

EPIO[0:4]

EPIO[0:1]

Ba
ck

 u
p

2 4

Figure 5: This figure sketches an example of our discrete optimization method to optimally distribute a set of lenses based on a local analysis
of the 2D light field. We are given an input light field of width W = 5 and a set of candidate lenslets L with widths Lw = { 1©, 2©, 4©}. Each
lenslet covers a (rectangular) sub-area of the input light field. The algorithm starts with the full light field width EPIO[0 : 5]. It places
candidate lenslets (starting with L[1] = 1©) on the right of the light field and recurses to find the optimal lens distribution for the remaining
left subset. This recursion continues until the base case of EPIO[0 : 1] and L[1] = 1©. The incurred error for placing this single lens is then
used (orange arrow) to find the optimal lenslet distribution for EPIO[0 : 2], as it now allows us to compute the error for each of the two
possible lens configurations 1© 1© and 2©. 2© has the lower error and is recorded as the optimal lens distribution (marked with bold green
box) for EPIO[0 : 2]. This continues back up to EPIO[0 : 5], where 2© 1© 2© has the lowest error and is the final optimal distribution.

Level 3: error(EPIO[0 : 3])

LOerror = min(error(EPIO[0 : 2])+ error(applyLens(2,L[1])),
error(EPIO[0 : 1])+ error(applyLens(1,L[2]))).

We continue to recurse.

Level 2: error(EPIO[0 : 2])

LOerror = min(error(EPIO[0 : 1])+ error(applyLens(1,L[1])),
error(applyLens(0,L[2]))).

At this level, we see that there is no further error for L[2] — the
EPII subset is 2 wide, and L[3] is 2 wide.

Level 1: error(EPIO[0 : 1])

LOerror = min(error(applyLens(0,L[1]))).

We’ve now hit the bottom of our recursive stack, and we can start
adding values to table T . As the application of L[1] is at position 0,
we can also add it to the table T . We imagine this lens placement
has an error of 10:

EPI subset Error Lens configuration

0:1 10 {L[1]}

Level 2: error(EPIO[0 : 2])

LOerror = min(10+ error(applyLens(1,L[1])),
error(applyLens(0,L[2]))).

Now, we can begin to work up the stack, using entries from table T
to replace terms. Lets suppose that, in this case, the error for two
single lenses is more than for one 2-wide lens. Let’s add it to T ,
and work back up the stack.

EPI subset Error Lens configuration

0:1 10 {L[1]}
0:2 22 {L[2]}

Level 3: error(EPIO[0 : 3])

LOerror = min(22+ error(applyLens(2,L[1])),
10+ error(applyLens(1,L[2]))).

From T , we look up the two subset errors. The lens configurations
presented are either LO = {L[1],L[2]} or LO = {L[2],L[1]}. We
suppose the second has the lowest error of 24 and add it to T :

EPI subset Error Lens configuration

0:1 10 {L[1]}
0:2 22 {L[2]}
0:3 24 {L[2],L[1]}

Level 4: error(EPIO[0 : 4])

LOerror = min(24+ error(applyLens(3,L[1])),
22+ error(applyLens(2,L[2])),
error(applyLens(0,L[3]))).

We suppose that applying the 4-wide lens (L[3]) or the LO =
{L[2],L[2]} configuration have higher errors. Hence, we add LO =
{L[2],L[1],L[1]} to T .

EPI subset Error Lens configuration

0:1 10 {L[1]}
0:2 22 {L[2]}
0:3 24 {L[2], L[1]}
0:4 28 {L[2],L[1],L[1]}

Level 5: error(EPIO[0 : 5])

LOerror = min(28+ error(applyLens(4,L[1])),
24+ error(applyLens(3,L[2])),
10+ error(applyLens(1,L[3]))).

Finally, we will suppose that the second lens configuration option
is cheapest and add it to T . We have arrived back at the full EPI
slice width. We can now read the W = 5 lens configuration from
T . This recursive method, which continually saves the best result
for EPI subsets, saves us from having to brute-force search every
possible option.

EPI subset Error Lens configuration

0:1 10 {L[1]}
0:2 22 {L[2]}
0:3 24 {L[2], L[1]}
0:4 28 {L[2],L[1],L[1]}
0:5 34 {L[2],L[1],L[2]}

3 Spatial vs. Angular Weight Variations

u

s

u

s

u

s

+ α(1-α) (error (error((
(error (error =

Figure 6: Spatial vs. angular weight variations. Top: With no
weighting terms, the error for the application of a lens (in red) to
the EPI slice is computed by comparing the output color of each
lens pixel (as the mean of all pixels within the pixel’s extent) against
all pixels in the input light field within the pixel’s extent. Bottom:
The spatial error and the angular error are computed independently
within the lens. Two error values are computed, one row-wise and
one column-wise: each row/column of pixels in the input light field
(in yellow), within each output pixel extent, are compared using the
L2 norm, and these two different error sums are weighted using α

to produce the final error for this lens application.

The L2 error described in Equation 1 in the main paper can directly
be computed in the light field domain; however, the angular and
spatial dimensions can be re-weighted if desired. Instead of com-
puting a 2D box filter along both dimensions, we can compute the
angular and spatial errors individually: the L2 norm is computed
along the spatial direction (summing up 2D box columns) and the
angular direction (summing up 2D box rows). The resulting er-
rors can then be combined using a spatial-angular weighting factor.
This way, the lens generation can be steered to either focus on re-
producing the angular variation or on reproducing spatial variation.
Figure 6 demonstrates this for one lens application in an EPI slice.
All results in this paper are computed with equal weights for both
dimensions. Figure 7 overleaf shows this effect on the Train and
Elephant datasets. Predictably, high spatial weight maintains crisp
edges and blurs content with large angular variation, and high an-
gular weight places large lenses for good angular extent but lowers
spatial resolution. All our results produced used a balanced weight-
ing.

4 Multi-scanline Solve

We use a sliding window of multiple scanlines to compute the lens
arrangement for each particular scanline. The lens error on one
scanline is then computed by summing the errors supposing the lens
were also applied to neighboring scanlines (Figure 8).

Section 6.2 provides pseudocode for the base discrete optimization
case with even spatial vs. angular weighting and single scanline
solving.

u

s

u

s

u

s
Scanline k

Scanline k+1

Scanline k-1

3-wide sliding window

error = error(+ +)

3

Figure 8: Multi-scanline solve. EPI slices in a window, i.e., neigh-
bouring scanlines, have the candidate lens applied. The L2 errors
from each scanline are averaged to create the final lens error.

5 More Simulation Results

Figures 9, 10, 11, and 12 present further result comparisons.

Spatial / angular weighting of 0.01 (high angular weight).

Spatial / angular weighting of 0.10.

Spatial / angular weighting of 0.25.

Spatial / angular weighting of 0.50 (balanced weighting).

Spatial / angular weighting of 0.75.

Spatial / angular weighting of 0.90.

Spatial / angular weighting of 0.99 (high spatial weight).

Figure 7: Spatial and angular weight variations for the train and elephant test scenes, with the front of the house set to be at zero depth (‘on’
the resulting lenticular display) in the train scene and the tusk similarly in the elephant scene. We show one frame simulating a view of the
display parallel to the optical axis of the lenses. High spatial weighting causes angular components to blur, such as the backgrounds, but
maintains spatial resolution. High angular weighting places large lenses (single strips of horizontal color in this visualization) to capture the
angular content.

Adaptive sampling with 2 to 17 views per lens.

Regular sampling with 2 views per lens.

Regular sampling with 5 views per lens.

Regular sampling with 10 views per lens.

Figure 9: Results for the Amethyst, Jelly Beans, and Lego Bulldozer data set.

Adaptive sampling with 2 to 20 views per lens.

Regular sampling with 2 views per lens.

Regular sampling with 5 views per lens.

Regular sampling with 10 views per lens.

Regular sampling with 20 views per lens.

Figure 10: Results for the Lecture, Foyer, and Mansion data set.

Adaptive sampling with 2 to 17 views per lens (2 to 20 for Pomme).

Regular sampling with 2 views per lens.

Regular sampling with 5 views per lens.

Regular sampling with 10 views per lens.

Figure 11: Results for the Lego Knights, Necklace, and Pomme data set.

Adaptive sampling with 2 to 17 views per lens.

Regular sampling with 2 views per lens.

Regular sampling with 5 views per lens.

Regular sampling with 10 views per lens.

Figure 12: Results for the Tarot Coarse and Tarot Fine data set.

6 Pseudocode

6.1 Lens Optimization

6.1.1 Aspherical Lens

First, we show pseudocode to generate an aspheric conic section (Figure 2). This is represented as a chord of piecewise planar sections; for
accurate refraction, normals are generated at all ray intersection points.

1 % Generate an aspherical chord conic section.
2 %
3 % Input:
4 % points = linspace(-W/2,W/2,NOP)
5 % where W is lens width, NOP is number of points to generate
6 % R = radius of curvature
7 % Kappa = conic constant
8 % Alpha = distortion terms (does nothing currently)
9 %

10 % Output:
11 % x = x coordinates vector
12 % y = y coordinates vector
13 % n = 2 x length(points) vector holding normals
14 %
15 function [x,y,n] = getAsphericalChord(points, R, Kappa, Alpha)
16

17 % Determine points
18 psqr = points.ˆ2;
19 pit = psqr;
20

21 % Distortion term computation
22 a = zeros(size(psqr));
23 for i=1:size(Alpha,2)
24 a = a + Alpha(1,i)*pit;
25 pit = pit .* psqr;
26 end
27

28 % Equation 2. Doesn't consider distortion terms
29 z = psqr ./ (R*(1+sqrt(1-(1+Kappa)*psqr/Rˆ2)));
30

31 % Determine normals
32 pcube = points.ˆ3;
33 sqrtTerm = sqrt(1-(1+Kappa)*psqr/Rˆ2);
34

35 % Diff of first term
36 n = 2*points./(R*(1+sqrtTerm));
37 n = n + (1+Kappa)*pcube./(Rˆ3*(1+sqrtTerm).ˆ2 .*sqrtTerm);
38 n = [n;-ones(size(n))];
39

40 % Diff of perturbation terms
41 a = zeros(size(psqr));
42 pit = pcube;
43

44 % Distortion term diff
45 for i=1:size(Alpha,2)
46 a = a + (2+2*i) * Alpha(1,i)*pit;
47 pit = pit .* psqr;
48 end
49

50 % Normalize
51 norms = sqrt(sum(n.ˆ2,1));
52 n = n./[norms;norms];
53

54 % Invert so that lens looks upward
55 x = -points;
56 y = -z;
57 n = -n;
58

59 end

6.1.2 Lens Error - Plano-Convex

Next, we see how to compute the error for all rays from all viewing positions refracting in the lens surface — this is our objective
function. We omit refractRay and intersectRay functions as these should be well understood given the normals generated from
getAsphericalChord.

1 % Calculate the error for all directions.
2 %
3 % Input:
4 % eyePos = Position of viewer (very far away from lens)
5 % targetPC = The Pixel Center x coord on the image plane for corresp. directions
6 % X = Parameters (R,kappa,alpha,F)
7 % W = Width of lens
8 % n = Refractive index of lens
9 % NOP = Number of points on lens to sample

10 %
11 % Output:
12 % accumError = Total error
13 % allErrors = Vector of errors per ray
14 %
15 function [accumError, allErrors] = lensError(X, eyePositions, targetPC, W, n, NOP)
16

17 R = X(1);
18 Kappa = X(2);
19 Alpha = X(3:end-1);
20 targetF = X(end);
21

22 % Generate points lying on aspherical lenslet surface
23 [cX,cY,N] = getAsphericalChord(linspace(-W/2,W/2,NOP), R, Kappa, Alpha);
24

25

26 % Calculate error for each eye pos
27 for j = 1:size(eyePositions,2)
28

29 allX = [];
30 for i=1:numel(cX);
31 % For each point on lens, set up ray to eye point
32 l_p1 = eyePositions(:,j)';
33 l_p2 = [cX(i), cY(i)];
34

35 % Refract ray defined by endpoints l_p1, l_p2
36 r1 = refractRay(l_p2-l_p1, N(:,i)', 1, n);
37 p1 = l_p2;
38

39 % Intersect ray p1+t*r1 with pixel plane
40 pInter = intersectRays(p1, r1, [targetPC(j),-targetF], [1,0]);
41

42 % Record intersection
43 allX = [allX pInter(1)];
44 end
45

46 allErrors(j,:) = allX-targetPC(j);
47 accumError += sum(abs(allErrors(j,:)) .ˆ2);
48

49 end

6.1.3 Setup and Calling

Finally, we show how to set up the optimization call and set initial parameters given the input constants.

1 % Setup constants
2 %
3 fieldOfView = 30; % Degrees
4 W = 5; % Units depend on pixel width; assume 1.
5 n = 1.47
6 nRays = 100;
7 eyeDepth = 1000;
8

9 % Derive looking directions
10 %
11 % The eye positions are at a fixed depth, and are based on the field
12 % of view.
13 theta = fieldOfView/2;
14 % Gradient of widest ray in field of view
15 m = 1 / tand(theta);
16

17 % Total horizontal range of all eye positions
18 eyeWidth = 2*(eyeDepth/m);
19 eyePositions = [linspace(-eyeWidth/2, eyeWidth/2, W), ones(1,W)*eyeDepth];
20

21 % Linearly interpolate pixel positions,
22 % assuming pixel width is 1.
23 %(Sign must be invese to eye locations due to refraction)
24 targetPC = linspace(W/2 - 1/2, -W/2 + 1/2, W);
25

26 % Objective function
27 %
28 objFunc = @(x)lensError(x, eyePositions, targetPC, W, n, nRays);
29

30 F = W / (2 * tand(fieldOfView / 2));
31

32 % Distortion parameters (unused)
33 % Increase to use alpha params.
34 dParams = 0;
35

36 % Initial optimization parameters
37 % R, kappa, alpha, F
38 x0 = [-(1-n)/n*f, -(1/n)ˆ2, zeros(1,dParams), F];
39

40 % Call optimization routine
41 [result, error] = fminsearch(objFunc, x0, ...
42 optimset('TolX', 1e-8, 'MaxFunEvals', 10000 * length(x0)));
43

44 % Collect result
45 R = result(1);
46 kappa = result(2);
47 alpha = result(3:end-1);
48 F = result(end);

6.2 Discrete Light Field Optimization

6.2.1 Setup

First, we show the setup of the discrete optimization and the initialization of table T .

1 % Compute an adaptive sampling over an epipolar image.
2 %
3 % Input:
4 % epiSlice = Raster EPI representing a 'scanline slice' of a light field.
5 % lensWidths = Vector of lens sizes in pixel units, e.g., [1:20]
6 %
7 % Output:
8 % minError = The computed minimum error from applying...
9 % lensConfig = The optimal lens set configuration.

10 %
11 function [minError,lensConfig] = disOpt(epiSlice, lensWidths)
12 global indexTable errorTable widthsTable;
13

14 % Table T.
15 % Global 'best lens combination' tables.
16 indexTable = [];
17 errorTable = [];
18 widthsTable = [];
19

20 % Extent of a pixel in the output is assumed
21 % to be equal to one column in epiSlice.
22 pixelArea = size(epiSlice,1);
23

24 % 'Height' of each pixel in the raster (its u extent)
25 pixelHeights = ones(length(lensWidths), 1) ./ pixelArea;
26

27 % Subset of epi slice we are considering
28 epiSubset = size(epiSlice,2);
29

30 [minError,lensConfig] = discreteError(epiSlice, epiSubset, lensWidths, pixelHeights, 0);
31

32 end

6.2.2 Recursive Function

Next, we show the function which recurses through the possible lens set configurations and adds to T .

1 % Compute an adaptive sampling over an epipolar image.
2 %
3 % Input:
4 % epiSlice = Raster EPI.
5 % epiSubset = The width of the subset of epiSlice that we are concerned with.
6 % lensWidths = Vector of lens sizes in pixel units.
7 % pixelHeights= Vector of heights of output pixels.
8 % depth = Depth of recursion - for debug.
9 %

10 % Output:
11 % minError = The computed minimum error.
12 % lensConfig = The optimal lens set
13 %
14 function [minError,lensConfig] = discreteError(epiSlice, epiSubset, lensWidths, ...
15 pixelHeights, depth)
16 global indexTable errorTable widthsTable;
17

18 % Collect an error for each width
19 widthErrors = zeros(length(lensWidths), 1);
20 widthPatterns = cell(length(lensWidths), 1);
21

22 for i=1:length(lensWidths)
23

24 lensWidth = lensWidths(i);
25 pixelHeight = pixelHeights(i);
26

27 % First, get remaining subset width after placing
28 % this lens at right-most part of epiSlice
29 upToWidth = epiSubset - lensWidth;
30

31 % If this width is negative, i.e., if the lens width is larger,
32 % then this lens cannot fit and we assign a large error
33 if upToWidth < 0
34 widthErrors(i) = Inf;
35 widthPatterns(i) = {-1};
36 % If the lens width equals the remaining subset width
37 elseif upToWidth == 0
38 % This is a base case.
39 % Compute the error directly.
40 %
41 widthErrors(i) = applyLens(epiSlice, lensWidth, upToWidth, pixelHeight);
42 widthPatterns(i) = {lensWidth};
43

44 % It is possible for a length of 'lensWidth' to already
45 % exist from a deeper level plus a lens (e.g., 10 will
46 % already exist from 5 + 5.
47 index = indexTable == lensWidth;
48 if sum(index) == 0
49 % Doesn't exist in the table; add
50 indexTable = [indexTable lensWidth];
51 errorTable = [errorTable widthErrors(i)];
52 widthsTable = [widthsTable widthPatterns(i)];
53 else
54 % Replace existing value if error is less.
55 errors = errorTable;
56 errors(¬index) = Inf;
57 [minE,ind] = min(errors);
58

59 if widthErrors(i) < minE
60 errorTable(ind) = widthErrors(i);
61 widthsTable(ind) = widthPatterns(i);
62 end
63 end
64 % Else
65 else

66 % Look up this width in T. If empty, recurse.
67 index = indexTable == upToWidth;
68 % If there's no entry in errorTable for this width
69 if sum(index) == 0
70 % We need to recurse and find the error
71 [upToError,widths] = discreteError(epiSlice, upToWidth, lensWidths, ...
72 pixelHeights, depth+1);
73 else
74 errors = errorTable;
75 errors(¬index) = Inf;
76 [¬,ind] = min(errors);
77 upToError = errorTable(ind);
78 widths = widthsTable(ind);
79 end
80

81 % The combined error for this lensWidth is equal to the
82 % upToError plus the lens error placed at the end.
83 lensError = applyLens(epiSlice, lensWidth, upToWidth, pixelHeight);
84

85 % Set error and width pattern that achieves this error.
86 widthErrors(i) = upToError + lensError;
87 widthPatterns(i) = {[widths{:} lensWidth]};
88

89 % Add this entry to the index table ONLY if it hasn't been
90 % added before OR if it is the minimum error
91 % (and if so, replace the existing minimum error)
92 newIndex = upToWidth+lensWidth;
93 index = indexTable == newIndex;
94 if sum(index) == 0
95 % Doesn't exist in the table; add
96 indexTable = [indexTable newIndex];
97 errorTable = [errorTable widthErrors(i)];
98 widthsTable = [widthsTable widthPatterns(i)];
99 else

100 % Replace existing value if error is less.
101 errors = errorTable;
102 errors(¬index) = Inf;
103 [minE,ind] = min(errors);
104

105 if widthErrors(i) < minE
106 errorTable(ind) = widthErrors(i);
107 widthsTable(ind) = widthPatterns(i);
108 end
109 end
110 end
111 end
112

113 % Find minimum error and return best pattern of widths.
114 [minError,index] = min(widthErrors);
115 lensConfig = widthPatterns(index);
116

117 end

6.2.3 Applying Lenses

Finally, we show the function to apply a lens and computes the error per output pixel.

1 % Compute an adaptive sampling over an epipolar image.
2 %
3 % Input:
4 % epiSlice = Raster EPI.
5 % epiSubset = The width of the subset of epiSlice.
6 % lensWidths = Vector of lens sizes in pixel units.
7 % pixelHeights= Vector of heights of output pixels.
8 %
9 % Output:

10 % allErrors = The sum of errors for each output pixel
11 % allMeans = The colors of the output pixels
12 %
13 function [allErrors,allMeans] = applyLens(epiSlice, numPixels, upToWidth, lensWidth, pixelHeight)
14

15 % Get errors for each pixel in the output
16 allPixelErrors = zeros(numPixels, 1);
17 allPixelMeans = zeros(numPixels, 3);
18

19 for iPixel = 1:numPixels
20 % Compute pixel bounds
21 xMin = upToWidth + 1;
22 xMax = xMin + lensWidth;
23 % Sampling inaccuracy here in rounding.
24 yMin = round((iPixel-1)*pixelHeight + 1);
25 yMax = yMin + pixelHeight;
26

27 % Sample from epiSlice
28 colors = epiSlice(yMin:yMax, xMin:xMax, :);
29 [m n o] = size(colors);
30 % Reshape for easy comparison
31 cv = reshape(colors, [m*n o]);
32

33 % Average these colors.
34 mc = mean(cv, 1);
35 allPixelMeans(iPixel, :) = mc;
36

37 % Compute squared distance for each color from the mean.
38 % Easiest way to do this is to linearize colors.
39 sub = repmat(mc, m*n, 1) - cv;
40 allPixelErrors(iPixel) = sum(sum(abs(sub).ˆ2)) / (m*n);
41 end
42

43 allErrors = sum(allPixelErrors);
44 allMeans = {allPixelMeans};
45

46 end

References

CONICS, AND ABERRATIONS. Telescope optics. http://www.telescope-optics.net/conics_and_aberrations.htm.
Accessed: 2013-04-07.

KWEON, G.-I., AND KIM, C.-H. 2007. Aspherical lens design by using a numerical analysis. Journal of the Korean Physical Society 51, 1,
93–103.

PRUSS, C., GARBUSI, E., AND OSTEN, W. 2008. Testing aspheres. Opt. Photon. News 19, 4 (Apr), 24–29.

WIKIPEDIA. Aspheric lens. http://en.wikipedia.org/wiki/Aspheric_lens. Accessed: 2013-04-07.

WIKIPEDIA. Lens (optics), subsection ‘lensmaker’s equation’. http://en.wikipedia.org/wiki/Lens_(optics)
#Lensmaker.27s_equation. Accessed: 2013-04-07.

http://www.telescope-optics.net/conics_and_aberrations.htm
http://en.wikipedia.org/wiki/Aspheric_lens
http://en.wikipedia.org/wiki/Lens_(optics)#Lensmaker.27s_equation
http://en.wikipedia.org/wiki/Lens_(optics)#Lensmaker.27s_equation

