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Figure 1: Guided by sketching principles, we derive a plausible stroke order of an input static line drawing (left) to automatically animate
the sketching (right top). A user study shows that the inferred order is comparable to the order used by an artist (right bottom).

Abstract of action sequences in instructional animations, or simply for main-

] ) ) ] ] taining continuity during narrative storytelling. Traditionally, video
Revealing the sketching sequence of a line drawing can be visually scribing animations are created by recording the drawing process
intriguing and used for video-based storytelling. Typically this is during the creation of line art images, either by using video cam-
enabled based on tedious recording of artists’ drawing process. Weeras or recording functionalities of drawing software. This limits
demonstrate that it is often possible to estimate a reasonable draw+the creation of video scribing to a group of professional drawers.
ing order from a static line drawing with clearly de®ned shape ge- ) ) o ) )
ometry, which looks plausible to a human viewer. We map the key Our work is motivated by millions of searchable line drawings on
principles of drawing order from drawing cognition to computa- the Internet and intends to enable ready reuse of available draw-
tional procedures in our framework. Our system produces plausible ings for video scribing. Given a static line art image, we intend to
animated constructions of input line drawings, with no or little user estimate a drawing order from the image itself, which is visually
intervention. We test our algorithm on a range of input sketches, Plausible to a human viewer (see Figure 1). Basic drawing prin-
with varying degree of complexity and structure, and evaluate the ciples [Guptill and Meyer 1997; Willats 1997] naturally demand a
results via a user study. We also present applications to gesturesolution to the following key problems (see Figure 2): (i) construct

drawing synthesis and drawing animation creation especially in the @ coarse-to-®ne hierarchical representation of an input line drawing
context of video scribing. image, since drawers, both amateurs and professionals, mostly start

with a rough sketch and then gradually re®ne the drawing by in-
troducing additional details, (ii) order a set of drawing strokes, and

Keywords: line art, animation, drawing analysis, video scribing ®nally (iii) determine directions for each of the individual strokes.

Links: ©DL TIPDF @Wes The order of compilation of a drawing might vary with people or
for the same person across time. This implies that our problems
1 Introduction typically have multiple plausible solutions. Therefore, we focus

on ®nding one of theeasonablesolutions that look plausible to a
Line art is a popular art form, and is widely used for illustrations, human viewer, instead of searching for thestdrawing order if
caricatures, cartoons, etc. Demonstration videos and commercialsany. Although drawing order of line art is subjective and involves
(e.g., a series of animations by the RSA) often use animation se-personal taste and preferences, drawers indeed follow certain sets
quences showing the drawing process of line artworks as a mode ofof rules due to their stereotypical behavior, as supported by exten-
instruction to vividly tell stories. The technique for producing such sive research studies in the cognitive psychology (see [van Som-
dynamic line art (with synchronized audio content) is often referred mers 1984; Tversky and Suwa 2009] and references therein).
asvideo scribing which is desirable for building anticipation, di-

recting viewer attention from one object to another, conveying order W& Propose an effective solution for estimating a reasonable or-
der given a number of 2D lines vectorized from line art images,

with most of the curve lines being sharp and cleanly de®ned. Our
work makes the following contributions: (i) introduce the problem
of animated construction of line drawings, (ii) summarize geomet-
ric guidelines of drawing order from ®ndings in drawing cognition,
which are then computationally encoded through analysis of line
drawings, and (iii) effectively simulate the drawing process by con-
structing a coarse-to-®ne hierarchy and formulating the ordering of
strokes as ®nding a Hamiltonian path on a graph encoding both the
individual properties of lines (e.g., complexity) and their interrela-
tions (e.g., proximity, collinearity, and anchoring).
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Since the plausibility of the estimated drawing orders is subjective,
we conduct a user study to evaluate the perceived quality of our so-



lutions compared with a set of alternative strategies. We analyze ;
and evaluate a variety of line artimages, including those created by |7}~
artists and synthesized by computer graphics. We show the applica-|
tions of animating line drawings to gesture drawing synthesis, and
video scribing animation creation (see supplemental video).

2 Related Work

Art and cognition. Drawing-instruction books (e.g., [Dodson
1990; Nicolaides 1990; Edwards 1999]) seldom discuss speci®c
principles of drawing order, but instead focus on visual representa-
tion of different drawing techniques. However, in psychology and
cognitive science, the order of drawing elements of a sketch or de-
sign is important since the order reveals the underlying organization
of the sketch [Tversky and Suwa 2009], across various levels (e.g.,
of a motor program, mental construction, or conceptual organiza-
tion). In an important series of works, Novick and Tversky [1987; . L )

ing errors based on proximity and parallelism, and then replaces

1999] propose that the order in which line stokes are drawn re ects . . PN ;
how we schematize and conceptualize objects. Further, they Sug_each group of lines with an application-oriented new line. Shesh

gest that the drawing order of strokes also reveals our organizationalr.](% Crt1_en [2008] propose a faster variant to support dynamic sim-
of a scene and its hierarchical representation. Note that althoughpl cation.

automatic drawing and painting systems without human interven- Sketch understanding and recognition. Several research ®elds,
tion like AARON (cf. [Cohen 1995] and references therein) exist, such as sketch understanding [Sezgin et al. 2001] and engineering
such systems focus on the ®nal drawing rather than the temporaldrawing analysis [Tombre 1998, often deal with the analysis of line
aspect of the drawing process. drawings but a detailed review of them is beyond the scope of our
paper. The solutions of those ®elds regularly use domain knowl-
edge, e.g., mathematical symbols, mechanical engineering design,
circuit diagrams, etc. for beauti®cation and recognition of freehand
sketches or engineering drawings.

Figure 2: Main stages of our framework: hierarchy reconstruc-
tion (a), grouping (b), and ordering on signi®cant lines (c).

Ma 2004]: the importance of input lines is ®rst evaluated mainly
based on certain density measures and less important lines are then
omitted to reduce clutter. Alternatively, Barla et al. [2005] present a
simpli®cation technique based on perceptual grouping, supporting
multiple applications in a uni®ed framework (e.g., density reduc-
tion, level-of-detail (LOD) representation, progressive drawing).
Their technique iteratively clusters pairs of input lines, with group-

Writing order recovery. Observers can reliably extract drawing
orders from static traces of handwritten forms [Babcock and Freyd
1988]. Solutions have been proposed to recover writing order from
handwriting images, and use the knowledge to boost recognition
rate (see [Nguyen and Blumenstein 2010] and references therein).Our work is orthogonal to efforts to map properties between a scene
Unlike drawing, writing usually has more speci®c ordering rules, and a picture that represents the scene (i.e., the interaction between
which are almost uniquely de®ned for individual characters. Even the two spaces), and optimize the ®nal picture to best satisfy certain
then the problem of restorirte correct writingorder, instead of goals [Durand 2002; DeCarlo and Stone 2010] or studying how
reasonable drawingrder of a character, is rather challenging. Few artists use line drawing for conveying 3D shapes [Cole et al. 2008].
attempts have been made in the context of multiple strokes [Kato In geometry processing, shape analysis has also been used for im-
and Yasuhara 1999] or logographic writing like Chinese charac- proved acquisition [Li et al. 2010] and for model abstraction [Mehra
ters [Wu et al. 2007]. Given the usual dependency across differentet al. 2009]. Instead we focus on derivitegporalinformation of

parts of a sketch, our problem is signi®cantly more complex. drawing stokes, a problem which has largely been unexplored.

Non-photorealistic rendering (NPR). Synthesizing line drawings 3  Overview
from images and 3D models has been extensively studied [Winken-

bach and Salesin 1994; Gooch and Gooch 2001; Strothotte andinput. Line art images consist of straight or curved lines to ex-
Schlechtweg 2002; Judd et al. 2007; Lee et al. 2007; Grabli et al. press the shape of 2D or 3D scene objects. In other words, line art
2010]. Such techniques can be used to automatically produceemphasizes form and outline, over color, shading, or texture. Such
compelling images as input to our framework. Mimicking hand rich geometric information is vital to our technique. In our sys-
drawing, House and Singh [2007] synthesize line drawings from tem we consider only line art images with cleanly de®ned lines or
3D models by a dynamic process, with strokes generated by acurves, and exclude line drawings with shading or texture simulated
physically-based moving pen. Their algorithm simply begins with by hatching or stippling, where individual lines are hard to distin-
arandomly selected point on the model and traverses feature edgeguish from one another. We consider an input line drawing to be an
based on connectivity. The drawing order produced by our algo- image composed of amorderedset ofvectorized?D line strokes.

rithm can directly bene®t such a system. ) . ) ) .
Broadly, line art is created in two styles: one with erasing and one

Northam et al. [2010] present a stroke-based renderer to reduce dewithout erasing. In the ®rst scenario, a drawer begins with a rough
tail obstruction and enhance artistic styles for painterly rendering, sketch depicting a global structure of the drawing and then pro-

e.g., for creating an image with a hand-painted appearance from agressively introduces details by simply sketching over the existing

photography. They adopt the layer-based painterly rendering algo- strokes (also referred as over-sketching). The ®nal drawing is ob-
rithm by Hertzmann [1998], which implicitly orders brush strokes tained by erasing all intermediate reference lines. In the second
by grouping strokes of similar salience into layers. Brush strokes at scenario, all strokes drawn by the drawer directly contribute to and

individual layers are then ordered by evaluating the valuespé- appear in the ®nal artwork. The strokes are again inserted typically
rate stroke properties, e.g., in ascending/descending luminance or-in a coarse-to-®ne manner.

der. In general their problem is more ill-posed than ours mainly due ) . )
to large overlap between brush strokes. Hierarchy reconstruction. The above observations motivate us to

®rst construct a coarse-to-®ne hierarchy (Section 5.1), which serves
Line drawing simpli®cation. Our solution of hierarchy recon-  as alevel-by-leveldrawing order (Figure 2) for both these draw-
struction is based on line drawing simpli®cation. Early simpli®ca- ing styles, paves the way for the introduction of hierarchical draw-
tion algorithms focus on the application of density reduction, which ing guidelines from drawing cognition (Section 4.1), and provides
is usually achieved by line omission [Grabli et al. 2004; Wilson and meaningful grouping of input line strokes (Figure 2b). Animating



a line drawing in the second style (i.e., without erasing) is our main —_— ~ —_—
focus, for which we interpret the input line strokes as a two-level —_— 2 0O
representation: the signi®cant line strokes in each group form a —j

(c)

coarse representation of the drawing and are drawn ®rst (Figure 2c), ;
followed by the rest of the lines representing the details. @ ®)

Stroke ordering. In the second step, we estimate a drawing or- ea substrate
der of lines at individual levels (Section 5.2). We incorporate the éﬁ attachme:{/
guiding principles (Section 4) to order the signi®cant lines and for- ~ v

mulate the ordering problem as ®nding a Hamiltonian path in a (d) (e) 0]
directed graph (Section 5.3), with graph nodes corresponding to
lines in the input drawing and graph edges carrying proximity and
anchoring guidelines. Both graph nodes and edges are associate
with appropriate cost based on the drawing guidelines such that the
Hamiltonian path with the (approximate) minimum cost naturally
corresponds to a reasonable drawing order. The order of the detai
lines is achieved using a simpli®ed ordering scheme. Finally, in

Section 5.4, we determine the directions of the individual strokes. . .
4.2 Order in stroke making

Figure 3: Guidelines of order in stroke making: (a) by proximity,
) by collinearity, (c) by similarity of form, (d) by symmetry, and
e,f) by anchoring. The order is shown with arrows or numbers.

Ithe local level (within each sub-hierarchy) and similarity operations
at the more global level (across sub-hierarchies).

4  Guidelines for Drawing Order In each level of hierarchy, order among strokes is affected by a very
é/vide spectrum of factors including geometric, semantic, and motor
re exes [Gombrich 1960; Viviani and Stucchi 1992]. Although se-
mantic and motor convenience can impose important ordering con-
straints, especially in abstract sketches, we mainly focus on the ge-
ometric aspects given a static trace as input. However, by favoring
The guidelines were originally obtained by carefully conducting continuity, e.g., treatment of T-junctions, we do favor longer strokes
and analyzing experimental studies of graphic productions, and pro-€ven across gaps as favored by motor convenience.

vide insights to various layers of organization in the drawing perfor-
mance of ordinary people (i.e., without professional drawing train-
ing), including adults and children. Although the guidelines were
obtained via study and analysis of simple drawings, they are also
applicable, as veri®ed by our extensive evaluation, for ordering el-
ements of complex drawings by carefully modeling the interaction
among the individual simple guidelines (see Section 5).

Based on extensive user studies, van Sommers [1984] prescribe
various high-level guidelines for the order of drawing geometric
designs and simple objects, which form the base of our research. In
this section, we identify the important geometric guidelines.

According to geometric considerations, other things being equal,
both right- and left-handed subjects group components on the basis
of ®ve factors, as follows (see Figure 3):

R1 (Simplicity): Most start by drawing lines with simple shapes or
smooth lines. Subsequently, these lines are used as guides for more
complex curves.

In this work, we do not consider secondary effects arising from ori-
entation of canvas surface, size of drawing, drawing medium, etc.
For example, pens and brushes that need continual replenishmen
with ink impose an upper limit on the length of continuous strokes,
signi®cantly in uencing the structure of the drawing process. There
is no such issue with pencils or ballpoint pens. Since we start from

a static trace, we simply assume that the input drawing is made with g3 (Collinearity): For geometric and semantic reasons, drawers

a pencil on A4-sized paper ®xed to a horizontal surface, which is 5, continuity, and thus follow the trajectory of interrupted lines.
also one of the primary con®gurations for user studies adopted by

R2 (Proximity): Proximity plays a dominant role in determining
Prder and starting positions of intermediate stokes. Speci®cally,
subjects invariably move to the nearest element or the element along
the trajectory they are following, due to obvious economies of effort
and decision.

van Sommers [1984]. R4 (Similarity) : Subjects intend to group drawing elements in the
) ) ) executive process by their similarity of size, form, orientation, etc.
4.1 Hierarchical structure of drawing The progression from one to another for elements of a similar type

moves in a consistent order, e.g., clockwise from 11 o'clock to 5

Drawings, being re ections of our mental abstraction [Novick and o'clock, top to bottom, o left to right.

Tversky 1999], have a natural multi-layered structure. In general,

(novice) subjects tend to draw elements from a coarse-to-®ne mangs (Symmetry). Symmetrical elements are repeated without any
ner. T_here are two alternatlve guidelines relating ordering of strokes giper drawing acts intervening. The order of drawing these repeated
with hierarchically organized forms: units is similar to that based on similarity.

H1 (Level by level) Subjects prefer to completely deal with one

level in the hierarchy, before proceeding to the next level. For ex-
ample, while drawing a human ®gure, arms are drawn ®rst, then, s chment of a new stroke to a substrate, i.e., existing structures.
hands, then ®ngers. For example, the crossbar (substrate) of a T-junction is almost in-
H2 (Sub-hierarchy by sub-hierarchy). Subjects complete sub-  Variably laid down ®rst before the stem (attachment), as shown in
hierarchies one by one. For example, they proceed to draw arm,Figure 3f. The basis of anchoring preference lies in the ease of

hand, ®ngers on one side, and then do the same on the other side. €ONtrol to achieve accuracy since it is easier to locate a (stationary)
pencil at rest at the beginning of a stroke. Without anchoring, the

Given a hierarchical organization of line strokét, amounts to a drawers have to anticipate the location of future end points and in-
breadth-®rst traversal of the hierarchy and the ordering of multiple tercept end points of completed arcs with moving lines, which is
units at each level is mainly dominated by geometric similarity. In dif®cult to control. Generally, subjects favor working from front
contrastH2 is similar to a depth-®rst traversal, which can be con- to back or from intact to occluded (Figure 3e and supplementary
sidered as combined ordering based on proximity and semantics atvideo). The corresponding anchoring guideline suggests:

Another geometric constraint affecting the order of compilation of
a drawing isanchoringor end controlof lines, which involves the



R6 (Anchoring): Substrate strokes are almost invariably drawn
®rst for the attachment of other connected strokes.

()

4.3 Stroke direction

Having determined a line order, the next step in drawing is to de-
cide in which direction to move the pencil. Such preferences nat-
urally depend on the convenience of mechanical movement of the
drawer's wrist and ®ngers, and visibility of drawn strokes, making

right- and left-handers behave differently. The guidelines for stroke
direction are presented next.

D1 (Preferred directions). Downward vertical strokes and left-to-
right horizontal strokes are favored by right-handed subjects, with
left-handers showing an analogous mirror-image preference.

D2 (Rarely to upper-left): Both right- and left-handed subjects
generally avoid drawing lines towards top-left directions.

Level-5

When producing simple geometric strokes, e.g., sets of straight
lines, the majority of strokes conform to the preferred stroke direc-
tions. However, for complex strokes with high-curvature corners, it
is common that drawers turn a corner without lifting the pencil off
the paper (i.e., continuous paper contact is favored) and may the”reducing the number of curves, and (ii) approximationstep for
have to proceed in an otherwise non-preferred direction. The pri- reducing shape complexity of individual strokes.
mary motive behind this is economy since it reduces the number of
executive commands while maintaining accuracy at line intersec- The clustering step is mainly based on the line drawing simpli®ca-
tions without requiring separate location controls. Thus, tion algorithm introduced by Barla et al. [2005], which iteratively
L clusters pairs of lines with a minimum error measure. Their def-
D3 (Paper contact) Non-preferred directions may be taken to fa-  jnjtion of error metric takegproximity and continuity, effectively

Figure 4: (a) Input drawing; (b,c) extracted hierarchy using the
modi®ed algorithm of Barla et al. [2005]; (d,e) extracted hierarchy
by our alternating simpli®cation approach; (f) ®nal grouping result.

vor continuous paper contact. enforcing desired guidelineR2 andR3. In order to avoid com-
) . plex curves while combining pairs of clustered lines to new ones,
4.4 Starting location the algorithm introduces-lines and' -groups to enforce parallelism

The remaining decision is where on the paper to begin, i.e., the @M0ng the new lines with the initial ones, whéte a parameter for
9 pap g controlling the simpli®cation scale (see [Barla et al. 2005] for de-

problem ofstarting location User studies indicate that the prefer- . : : - X .

ence of starting location is irrespective of the drawers' handedness: [2iS). We make two modi®cations to the original algorithm. First,
we use a length-weighted interpolation scheme for interpolating a

S1 (Starting location) Most drawers favor a starting position near new line from a pair of lines, thus encouraging the long curves to

the top part of a stroke of a simple drawing, e.g., containing simple remain close to their original positions. Second, we relax the def-

geometric forms. Interestingly, the preferences of starting location initions of "-lines and"-groups and allow small portions of lines,

and stroke direction are largely independent. 5% in our examples, to violate the original de®nitions, which eases
the choice of the parameter

5 Methodology Instead of simply preserving the shape of the original drawing dur-

In this section, we map the guidelines summarized in the previous INd clustering as in the algorithm of Barla et al. [2005], we focus on
section into computational procedures. progressively reducing shape complexity of linBi). To achieve
this, we create polyline approximations of the curves. For a given

Preprocessing. Our system accepts as input a set of unordered curve, we ®nd its piecewise linear approximation and require the
line strokes, vectorized from line drawing images (obtained us- polyline vertices to lie on the curve, which is a standard problem
ing publicly availablewWinToposoftware for our examples). Each  of curve polygonization [Rosin 2002] with parametecontrolling
stroke curve is encoded as a one-parameter curve, sampled unithe approximation error. Progressively reducing the number and
formly along its arc length. The software outputs only open curves, simplifying the shape of lines are equivalent to choosing increas-
breaking loops as necessary. For inputs with smudge lines or stronging values of simpli®cation scale parameteand approximation
hatching effects, we manually identify and delete the corresponding error parameter. Thus, for generating a hierarchy among the in-

curves, typically taking less than a minute of user interaction. put lines, we apply a series of alternating simpli®cations with pro-
gressively increasingand , each time starting from the previous,
5.1 Hierarchy reconstruction ®ner level. Figure 4 shows typical simpli®cation results. Such con-

N . . — .. structed hierarchy can be used to produce over-sketching animation
Almost any drawing involves hierarchical organization among its d(Ssee supplemental video), where the coarse level of the hierarchy
constituent elements. We ®rst a_nalyze_the input set of CUrVes antge g a3 guiding lines for the whole drawing.

organize them into a hierarchy with the input curves being the ®ne

scale features, which are grouped together by coarse scale prox-Two-level representation. Note that, by construction each line in
ies capturing the global structure of the line drawing (Figures 2 the coarse level of the hierarchy corresponds to a group of lines in
and 4). From the coarse to ®ne level, the hierarchy itself serves as ahe original drawing, thus providing a meaningful grouping across
level-by-level drawing order of the input drawing. A natural draw- the input lines (Figures 2b and 4f). Each group often has a multi-
ing order involves starting with a rough skeletal structure, and then layered structure: one or more lines, which we call sfmi®cant
progressively introducing additional lines for ®lling in geometric lines (e.g., Figure 2c), depict the global shape; while the rest of
details. Motivated by this, we introduce an iterative simpli®cation the lines serving as the details, which we call tretail lines, an-
approach that alternates between two steps:ilisteringstep for chor to the signi®cant lines. In each group, we mark lines as sig-



ni®cant based on their length (other priority ordering can also be texv; and the mean value &f ; g, respectively, and is a weight
used). First, we leave out the groups whose longest lines haveto balance the two terms (= 0:1 in our experiments). The ®rst
length smaller than 10% of the diagonal of the drawing's bound- term penalizes the deviation from a straight line, reaching zero for
ing box. For each of the remaining groups, we ®rst pick the longest a straight line; while the second term measures the standard devia-
line | as one of its signi®cant lines. We sort the remaining lines tion off g, reaching zero for constant-curvature lines like circles.
based on their length. We mark them as signi®cant if they are not
close to any of the already selected signi®cant lines (according toTyansition cost Durin .
Hausdorff distance) and their length is larger thadhk, whereklk sketching transition from ogne :’_{_!7;__!#_7:
denotes the length of the lileand 2 [0; 1 = 0:7in our im- ; ! ; gap
plementation). I?et_ = fliji = 0'1':::['n '] (1g denote the set of line o another_ 's affected / \

o . e by the inter-relations between illustration for c,,
signi®cant lines fronall the groups, encoding the global structure 1 Jines namely proximity, <o
of the input drawing (see Figures 2c and 8). collinearity, symmetry, and similarityR2-R5). We observed that
R4 andR5 are better at grouping lines instead of ordering the sig-
ni®cant lines that are already representatives of each group. Further,

Guided by sketching principles (Section 4), we now order the ex- the ggldellnes often_contradlct each oth_er, making it challengl_ng_ to
isting strokes of the input. FollowinB6 andH1, we ®rst draw all combine them consistently. In our design, we focus on proximity
the signi®cant lines, followed by the detail ones. We give prefer- R2and collinearityR3, expressed as follows:

ence toH1 overH2, becauséi2 demands the evaluation of high-

level semantic similarity between sub-hierarchies, which is rather Cra (li;1j) = Wp Coro (Iis1j) + (1 ! wp)Ceal (Iis1j);  (3)
challenging to automatically extract, especially from small approx- ) )

imate hand-drawn sketch lines. Next, we describe how to assignWhere weightw, (in the range [0, 1] and set =9 as default)

a drawing order, i.e., temporal order, to the signi®cant lines in set Palances the two effects. We measure proxiroity (li;1;) as the

L. The ordering of the detail lines will be discussed at the end of distance between the closest pointslomndl;, and collinearity
Section 5.3. asce (lislj) = %( i + j)? as the (positive) angular dif-

. L o ) . ference between endpoint tangentdioaindl; (see inset). Note
A S|mpI<_a solution is to g_reedlly impose a drawing orderlng, as fol- thatce (Ii;1; ) allows relatively wider gap for pairs of longer lines.
lows: given a starting line, the order of the rest of the lines can c?Oth measures are normalized@1].

be progressively determined based on the current con®guration an

tracing history. The advantage of this scheme comes from its sim- Constraints. As an important coupling effect, anchoring guideline
plicity and low computational cost. It is, however, dif®cult to adapt R6 implies anasymmetricbinary relation between two lines. For
such a heuristic scheme to various drawing styles (see Section 6.1)example, drawing of substrates (e.g., the crossbar of a T-junction)
Instead we propose global scheme by abstracting the ordering before attachments (e.g., the stem of a T-junction) involves ad-
problem as a global energy minimization over a permutation order- vanced planning for anchoring. It does not, however, mean that
ing ofindexset =[0;1;:::;n! 1]with the corresponding energy  the attachments should be drawn immediately after the substrate,
minimized over all the permutatiorts of | . Note that at the level i.e., it is common for a desired drawing order to have other lines
of structural lines, the number of lines is small enough to allow us in between the substrate and the attachment lines. Since formu-
to explore large parts of the combinatorial solution space, which we lating such inequality-like relation inta;a (li;lj) is complicated,
found to be crucial for deriving interesting orders and variations.  instead, we explicitly enforce such constraints during the optimiza-
tion process, as explained later.

5.2 Stroke ordering formulation

Energy function. We formulate the ordering problem as the fol-

lowing global minimization problem: We found it suf®cient to consider T-junctions for anchoring. Since,
X 1 X 2 by construction, the lines ih are at comparable scales, we use

p =argminw  Cng (lIp;) (i)+ Cra (Ipiilpi )i (1) the following simple strategy to de®ne a T-junction (Figure 5): two
p2P . . linesls andl; form the stem and crossbar of a T-junction, respec-

tively if the following are satis®ed: (i} intersects with a short seg-
ment of the tangent line at one of the end verticels ¢Figure 5a);

(ii) the (smaller) angle betwedn and the segment is larger than a
threshold, e.g20° (to exclude near parallel lines) and, (iii) the con-
®dence of T-junctiomnin(si; s2)=klck, is larger than a threshold,
e.g., 5% (to avoid detecting corners as T junctions, see Figure 5b).

subject to additional constraints derived from detected anchoring
con®gurations (see later). Heggy (1) captures the properties of
an individual linel (e.g., length and complexity etcQya (li;l;)
evaluates the transition cost from liheto |; (e.g., based on prox-
imity and continuity), andv is a weight to balance the in"uence
between the two terms (empirically, we found?2 [1; 3] and set to

w =1 by default). The function(i) is a monotonically decreasing

function ( (i) =1 ! i=n in our implementation) to encourage the
sorting of lines by their individual cost (e.g., to enforce the simplic- /N_ S~
ity guideline R1)). The sequence c(fpo ; Ipl - Ipm 1) gives us
a desired ordering df. Recall that our goal is to ®ndre@asonable 4 /
(b) ©

drawing order instead of recovering the original order thatled tothe (@ ls

input drawing. Figure 5: (a) T-junction detection; (b) an example of corner instead

Individual line cost. The individual line costing (I) is simply of T-junction; (c) a T-junction cycle can be broken by rejecting a T-
measured as thghape complexitgf a line according tdR1 in our junction with least con®dence as highlighted.
implementation. Empirically, we arrived at the following measure . L
to capture the desirable properties: 5.3 Stroke ordering optimization
_ _ _ YT 2 Solving the global minimization in Equation 1 is computationally
Gna (1) = (LK vs b vekaklk)+ =0 (it )P=m () expensive. A neve solution involving simple enumeration of all the
wherevs andve are the two end vertices of linem is the num- possible drawing orders is expensi2én!). Instead, we approxi-

ber of sampled vertices along ; and are the curvatures at ver-  mate the solution using a graph minimization, as described next.



than that from a riave construction. For example, in Figure 4, there

a nian path problem is NP-complete, given our carefully constructed
\ graph, the problem search space is already signi®cantly smaller
¢ . are 26 nodes, but instead26 25 = 650 possible directed edges
E; only 145 directed edges are present in the ®nal construction.
e
\ Starting fromlp , we progressively search by graph connectivity,
f using a branch-and-bound approach, for ®nding the Hamiltonian
path with the minimum cost, though resorting to other approxima-
Figure 6: (Left) Input sketch consisting of lines (a, b, ..., f). Thered tions is possible [Bondy and Murty 1976]. During the search, we
dot indicates the starting location of interest. (Right) Correspond- avoid treating all attachment lines before their corresponding sub-
ing k-NN directed graph (her& = 2), with nodes representing  strate lines, which not only enforces the anchoring constraints but
input lines. Dashed arrows denote removed edges. Startindpline  also terminates invalid paths early on.
is highlighted. Sinc&-NNs are found for each node independently, ] ] ) )
nodes can have valence higher tHafsee nodes ¢ and d). Choice ofk. The value ofk in constructingk-NN graphG sig-
ni®cantly in uences the availability of a Hamiltonian pathGnas
Encoding R2. Since proximity R2) has the primary in"uence on well as the search computational cost. To avoid combinatorial ex-
drawing order, we choose the next line to be drawn after the current plosion, we restrick 2 [3; 8] and the number of line. j smaller
line | as of one of itk-nearest neighbor&{NN) of I. We encode  than 35. For a given value & (= 4 by default), possible bidi-
the topological structure of the line drawing using a gré&phe rected edges (not frolk-nearest neighborhood) might be added to
(V; E), where each graph nodeVhrepresents aline in, i.e.,V = makeG at least weakly connected, i.e., to avoid disconnected com-
L (Figure 6). The graph edg& = f (I;;1;)g re ect thek-nearest ponents. If no Hamiltonian path exists for the current con®guration,
neighborhood of the lines, i.e., {li;lj) 2 E, |j is ak-nearest we increase the value &fby 1 until we reach the upper threshold.

neighbor ofl;, based on the distance metric useddgs (I;i;1;). We found this heuristic to work well in practice. Note that when no
) ) ) Hamiltonian path is found, we can simply pick the found longest
Encoding R6. In order to capture the anchoring constrairRsy, path with the minimum cost for ordering the involved lines, and

we make the grapl® directed To start with, all the current edges  sequentially append the rest of the lines simply by their proximity.
(based ork-NN) of G are bidirected. Then for each edfje; I ),

if i is detected as an attachmentjtowe retain the directed edge  Ordering of detail lines. Empirically, we observed that the order of

lj " li while discardind; " 1;,e.g.,la " Ipandls " Il are detail strokes is less important and thus we resort to a simpler strat-
discarded in Figure 6. The anchoring constraints, however, might egy instead of the computationally expensive strategy as required
con’ict with each other, leading to directed cyclewhere all the for the signi®cant lines. The detail lines in a group approximate
edges being oriented in the same direction and each node correcollection by certain similarityR4) or by semantics. We therefore
sponds to a T-junction (Figure 5c). In such cases, at least one an-draw the detail lines group by group, in the spirit of guidelH.
choring constraint has to be invalid. Since we have the con®denceThe traversal ordeacross groupss determined as follows: ®rst the

of each T-junction evaluated, we break directed cycles by removing centroid of each group of lines is calculated; then starting from the
the anchoring constraint corresponding to the least con®dent pairgroup containingpo, each group is traversed by proximity based
(e.g., the highlighted junction in Figure 5c) and change the corre- on the distance between the centroids. The drawing order of indi-
sponding edges back to bidirected ones. Although one can let thevidual lineswithin a groupis also decided by proximity. Unlike
optimization decide where to break the directed cycles, we found signi®cant lines, we found that the choice of the starting line inside
that this may lead to undesirable behavior with strong T-junctions each group was less important. Our current system randomly picks
getting removed. a line in a group as the starting line to re ect that details are often
included as an afterthought rather than as part of the original plan.

Starting position. The starting location further reduces the compu- This was also con®rmed by our user study ®ndings as detailed later.

tational cost. We observed that simply following the guidelBie
and starting the drawing process by a_Iine near the topmost of the5_4 Stroke direction determination

drawing often leads to unnatural drawing orders. Our input draw-

ings often contain semantically more meaningful objects (e.g., a hu- Having restored the drawing order of strokes, the remaining task
man ®gure), where starting with the most important or salient part is to determine the directions when drawing individual strokes. We
(e.g., the head) is often desirable. Instead of attempting to infer the provide the following two schemes based on the guidelibieD3.
starting location from geometry, we alow the user to specify a start-

ing point of interest (e.g., the red dot in Figure 6 (left)) and search Mechanical movement.The ®rst scheme is motivated by the com-
for the closest line (e.gly) to this point as the starting line, i.e., as  fortability of mechanical movement of hands and determines the
lp, - All the directed edges pointing to this line node in the graph drawing direction of individual strokes independenily, andD2.

are removed (e.gle " Ip), since no line would be drawn twice. It ~ Speci®cally, the direction is solely determined by dleateangle

is possible that the line closest to the user-speci®ed point is an atbetween the line de®ned by the two end points of the stroke and the
tachment line, which would locally violate the anchoring guideline. X-axis, denoted as (Figure 7). For right-handers, if is smaller

We still keep this line as the starting line, since such speci®c userthan some threshold= 12 in our case, the stroke will be drawn
preference should be respected.

Graph formulation. We associate each graph ndgevith indi-
vidual line costcing (i) and each edg€;;l;) with transition cost
Cra (li;1j). Our minimization problem now amounts to ®nding the
minimum cost path starting dago and visiting each node i6 ex-

actly once. This is equivalent to ®ndinddamiltonian pathin our [\/\/‘ <
directed graph [Bondy and Murty 1976]. Although the Hamilto-
INote that a cycle with at least one bidirected edge is not of our concern. Figure 7: lllustration for stroke direction by right-handers. Left-
handers have a mirrored preference (see supplementary viewer).

top! down
left! right




u oo
Ty

0N

O

Figure 8: Results of grouping (groups indicated by colors) and ordering of signi®cant lines (orders by numbers and directions by arrows).
Two representative results with the highest and lowest normalized votes in our user study are highlighted in green and red, respectively.

from left to right. Otherwise, it will be drawn from top to bottom.  ing NFO, and smoothest-®rst orderiB§O (i.e., based on the best
The stroke directions for left-handers are mirrored. collinearity). A random line and the longest line are detected as
the starting lines foRO andLFO, respectively. FONFO or SFO,

we use the same starting line as used by our algorithm. For consis-
tency, we use the scheme of stroke direction determination shown
in Figure 7 for all the methods.

Economy control. The second scheme is mainly motivated by mo-
tor convenience and economy of control when drawing a sequence
of lines, D3, which is useful for applications like gesture drawing
synthesis (see Section 6.2). The stroke directions are in uenced by
the order of strokes but less so by the handedness of the drawerin the designed questionnaire (see the project page) together with
The starting point as well as the direction of a stroke is mainly de- ordering videos used during the survey, subjects were requested
termined by examining which of its two end points is closer to the to pick the visually most plausible/reasonable order of a drawing

last drawn line. among 5anonymougossibilities from a total of 19 drawing ex-
) ) amples (Figure 9 (bottom)). In order to minimize fatigue among
6 Results and Discussion the subjects, the examples were split into 4 sets and each subject

as shown only 4-5 drawings. Each example was evaluated by

ore than 20 subjects on average. The participants were in the age
range 18-36, 30% females, with most being right-handed. Most of
the subjects had no professional drawing training, i.e., have little
drawing experience or have learned basic drawing skills only from
We have tested our algorithm on a wide range of input line draw- courses in primary/secondary schools or universities.

ings, with varying degrees of complexity and structure. Figure 8 _. .
shows some examples of grouping and ordering results. See theFlgure 9 (left) show the normalized votes for the ®ve methods. We

accompanying video for recorded drawing animations or the ani- conducted two-proportioa-tests to determine whether the differ-
mation viewer at the project page for live animations. The com- SN¢€ between the normalized votes by a pair of methods for all
putationally expensive step involves ®nding Hamiltonian paths on 1€ €xamples is statistically signi®cant. Overall our algorithm sig-
k-NN graphs, whose running time ranges from a few seconds to 2- ni®cantly outperformed the other four methops/glue< 0:01).

5 minutes, depending on the valuelkgfthe number of signi®cant %ng? t(r:]gr:gicnaler;;rrolggl(:eo angfa':n? ﬁ%rﬁegrrgafggggya‘r'}vg”
lines, and the con®guration kfNN graphs. In order to evaluate Exam 319 7 foISFO) Inp articd?é’rNFO igthe second best method
the visual plausibility of the detected drawing orders as generated p - np '

by our algorithm, we conducted a user study, which was done in (P-valué< 0:01 when comparing it to eitheBFO or LFO), con-
two parts. forming to the fact the proximity is the primary in uence on draw-

ing order. HoweverNFO typically performs poorly for drawings
Parameters. The algorithm output depends on a few key param- with a complex mixture of coarse and ®ne details like Examples 8
eters: number of nearest neighbdrsw in Equation 1, andv, and 17. The difference between the normalized votesH and

in Equation 3. Typically parameter values are selected within their SFO is not statistically signi®cant (two-tgikvalue = 0.728). As
corresponding ranges (Section 5). Although in simple examples de- expectedRO was the least favored.

fault values suf®ce, in complex ones (e.g., Figure 8 camera and boy)l_ icallv. h by sketchi h sh d
manual intervention may be needed (in our examples 2-3 tries). In 1YPIcally, humans start by sketching a rough shape and structure,

future, we plan to allow the user to specify a scale of interest and and then introduce details, thus reiterating the importance of build-

We ®rst discuss the evaluation results obtained via a user study an
then a few applications enabled by the derived drawing orders.

6.1 Evaluation

tag semantically important parts ing a level-of-detail representation of the input drawing. Among
' all the examples, our technique gets the lowest votes for Exam-
User study I. First, we evaluate theelative effectiveness of our al- ples 12 and 13. The subjects who preffO to ours for Ex-

gorithm compared to other possibilities (Figure 11), including ran- ample 12 have prede®ned semantics-based order for human ®gure
dom orderingRO, longest-®rst orderingFO, nearest-®rst order-  drawing in mind (e.g., heatl shoulder" legs), which by chance
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