
Analysis, Reconstruction and Manipulation using Arterial Snakes

Guo Li† Ligang Liu†∗ Hanlin Zheng† Niloy J. Mitra‡∗

†Zhejiang University ‡KAUST / IIT Delhi

metal stool skeletal snakesscanned pointset arterial snake network edited model

Figure 1: Starting from a noisy raw scan with large parts missing our algorithm analyzes and extracts a curve network with associated
cross-sectional profiles providing a reconstructed model. The extracted high-level shape representation enables easy, intuitive, yet powerful
geometry editing. Note that our algorithm is targeted towards delicate 1D features and fails to detect the small disc at the top of the stool.

Abstract

Man-made objects often consist of detailed and interleaving struc-
tures, which are created using cane, coils, metal wires, rods, etc.
The delicate structures, although manufactured using simple pro-
cedures, are challenging to scan and reconstruct. We observe that
such structures are inherently 1D, and hence are naturally repre-
sented using an arrangement of generating curves. We refer to the
resultant surfaces as arterial surfaces. In this paper we approach for
analyzing, reconstructing, and manipulating such arterial surfaces.
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The core of the algorithm is a novel deformable model, called ar-
terial snake, that simultaneously captures the topology and geome-
try of the arterial objects. The recovered snakes produce a natural
decomposition of the raw scans, with the decomposed parts often
capturing meaningful object sections. We demonstrate the robust-
ness of our algorithm on a variety of arterial objects corrupted with
noise, outliers, and with large parts missing. We present a range of
applications including reconstruction, topology repairing, and ma-
nipulation of arterial surfaces by directly controlling the underlying
curve network and the associated sectional profiles, which are oth-
erwise challenging to perform.

Keywords: Shape analysis, arterial snake, point cloud, surface
reconstruction, relief analysis

1 Introduction

Man-made objects made out of tubular components, like metal rods,
wood, cane, coils, are quite common in furniture design, metal
sculpture, and wire art (see Figure 2). Despite recent advances in
acquisition techniques, capturing such delicate structures remains
challenging. The resulting scans typically suffer from significant
self-occlusion resulting in imperfect point cloud data with missing



Figure 2: Two artworks that can be well represented as an inter-
woven network of arterial snakes. Reliable reconstruction of such
delicate structures from scanned data is challenging.

parts. Moreover, the raw scans are low-level representations based
on points and (unreliable) local connectivity derived based on spa-
tial proximity or scanning order. As a result recovering a meaning-
ful global topology from the partial scanned data is a challenging
problem.

We observe that such surfaces can be explained using 1D generat-
ing curves, which can be used to generate sweeping surfaces called
arterial surfaces (see Figure 1). More precisely, we define a lay-
ered arterial surface as interleaving tubular shapes, represented as
a collection of curves that gives rise to a series of sweeping sur-
faces. This characterization suggests a natural representation that
specifically encodes the underlying global topology, allows easy de-
composition into meaningful layers, and subsequently enables easy
and intuitive manipulations. Additionally, understanding the struc-
ture of the data allows us to improve the acquisition process and to
produce a globally consistent plausible surface.

Most skeleton extraction procedures, simple or state-of-the-art, ro-
bustly recover underlying curve segments that roughly explain the
geometric details around the non-intersection regions. However,
the results are unreliable around the overlap regions. Also the meth-
ods are not targeted to capture the global continuity and regularity
present in the data (see Figure 11).

We propose a novel algorithm that alternate between learning the
topology of the curve family and the geometric attributes of the
generating curve profiles to better explain the scanned data. The
algorithm is based on a globally-coupled optimization, where start-
ing from the confident small arterial segments, we grow the curves
to form long smooth coherent ones. The core of the optimization
is based on a novel surface representation, called arterial snake,
which is a deformable arterial surface automatically evolved by
growing reliable curve segments to fit the scanned data. The ex-
tracted high level shape representation subsequently allows easy
and intuitive manipulation of the geometry layers. By separating
the curves into multiple layers and learning their local-layering
structure, we facilitate intuitive geometric edits and manipulations
(see Figure 1). We have tested our algorithm on a variety of inputs,
both synthetic and acquired, under varying sampling density and
noise conditions with large chunks of missing data.

To the best of our knowledge, we are the first to propose an auto-
matic approach to separate interleaving arterial patterns into multi-
ple geometric layers. One of the key insights is that instead of ex-
tracting the curve skeleton directly, the topology of the arterial sur-
face can be traced by growing short snake segments starting from
the reliable tubular regions.

Contributions. Our key contributions are:

• arterial snake, a deformable primitive, to decompose a detail
surface into a multi-layer collection of 1D generative curves,

• a purely geometric approach to extract the arterial patterns
and define their layering relationship leading to an enhanced

reconstruction of the (incomplete) input scans, and
• a simple, intuitive, yet powerful shape manipulation frame-

work that allows easy and natural editing and creation of plau-
sible and realistic variants of the original geometry.

2 Related Work

Skeleton extraction. Curve-skeletons are 1D structures that are
often used to abstract geometry and topology of 3D shapes [Cornea
et al. 2007] or medical imaging [Kirbas and Quek 2004]. A clas-
sical approach for extraction of characteristic features is medial
axis, which consists of points that are equidistant from two or more
points of the underlying surface. Variants have been proposed to-
wards robustly defining medial axis for generating curve skeleton
of a shape [Siddiqi and Pizer 2008].

Topology-driven methods track the critical points of functions de-
fined on manifolds, and then capture their topological structure us-
ing Reeb graphs [Hilaga et al. 2001; Patané et al. 2008]. Dey and
Sun [2006] adopt a medial geodesic function over the medial axis
and sheet to convert them into 1D structures. Au et al. [2008] ex-
tract the skeleton by carefully shrinking a shape using constrained
Laplacian smoothing. Recently, Miklos et al. [2009; 2010] intro-
duce a family of skeletons that captures the important features of
a shape in a scale-adaptive way. This yields a hierarchy of succes-
sively simplified skeletons leading to an alternate curve representa-
tion, called scale axis (see Figure 11).

Shape analysis. Extraction and analysis of curve skeletons from
point clouds have been explored in a few recent attempts. Tagliasac-
chi et al. [2009] build upon the notion of generalized rotational sym-
metry axis for robust curve skeleton extraction. Cao et al. [2010]
extend the Laplacian-based contraction approach, originally intro-
duced by Au et al. [2008], to extract curve skeleton from point cloud
data. Recently, Livny et al. [2010] use a series of global optimiza-
tions to fit skeletal structures to scans of trees. Unlike these ap-
proaches, our method attempts to recover a functional set of curves
to capture the structure of the shape.

Mesh segmentation [Attene et al. 2006; Shamir 2008; Chen et al.
2009] decomposes a surface into a collection of non-overlapping
parts, based on some notion of equivalence. In certain cases,
specially for articulated bodies, segmented models are effectively
used to create a model skeleton for manipulating the underlying
shape [Simari et al. 2006]. These approaches, however, are ill-
suited for peeling the geometric details into individual layers. For
the family of shapes under investigation, we propose an arterial net-
work representation that attempts to capture the (procedural) man-
ufacturing ideology of the underlying objects.

Detail extraction and representation. Extracting geometric
features and details from a surface is essential for various detail-
preserving mesh manipulation operations [Kobbelt et al. 1998;
Botsch and Kobbelt 2003]. Alternatively, meshes can be treated
as signals with multiple frequency-bands, differential surface rep-
resentations [Sorkine et al. 2004; Lipman et al. 2005] for efficient
encoding of high-frequency content and for detail-preserving shape
manipulation. On the synthesis side, researchers have focused on
adding 3D geometric textures on surfaces, and creating interwoven
structures [Zhou et al. 2006].

Relief structures are popular sculptured artworks typically contain-
ing surface details that can expressed as height-fields over smooth
base surfaces [Weyrich et al. 2007]. Liu et al. [2006; 2007b] pro-
pose algorithms to extract isolated or periodic reliefs on a smooth
background or on a textured background. Recently Zatzarinni et
al. [2009] propose a novel formulation for segmenting multiple
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Figure 3: System overview. (Left to right) Starting from an input point cloud R, we estimate local directional vectors (in yellow) at each
point and use the reliable ones to generate a globally consistent vector field (in blue) in the remaining points. We then initialize a set of
arterial elements called snakelets, which then compete, evolve, and grow guided by the point samples and the computed vector field. The
snakes obtained from the iterative topology recovery and geometry fitting phases are finally regularized to yield an arterial snake network.

hight field reliefs on general surfaces. For arterial-like reliefs ex-
tracted using such methods, we use our algorithm to understand the
interwoven structures of the reliefs, which can then be used to im-
prove and manipulate the extracted structures (see Figures 1 and
14).

Deformable model. In a highly influential paper, Kass et
al. [1988] introduce snake as a model based technique for robust
segmentation of images. The definition has been subsequently ex-
tended to manifold surfaces [Lee and Lee 2002; Lee et al. 2005]
and to implicit functions [Esteban and Schmitt 2003; Esteve et al.
2005]. Duan and Qin [2004] propose intelligent balloon, a param-
eterized subdivision surface governed by a data driven energy min-
imization, to model complex shape geometry of arbitrary topology.
Sharf et al. [2007] grow a smooth deformable surface from inside
of a point cloud and traces the fronts using an explicit mesh repre-
sentation. In the context of man-made objects that are characterized
by sharp features, 1D curves have been shown to be powerful priors
for abstracting the shapes [Mehra et al. 2009] and also for intuitive
manipulations [Gal et al. 2009]. In this work, we employ arterial
surfaces as a shape prior for improved surface reconstructions. Fur-
ther, the analyzed structure of the curve network can be directly
used for high level shape manipulations as recently proposed by
Igarashi et al. [2010].

3 Overview

Given an unorganized set of points R, scanned or sampled from a
surface, our goal is to recover the underlying geometry. The input
point sets are noisy, contain outlier, and are incomplete. Our algo-
rithm is designed for objects that primarily consist of arterial sur-
faces, i.e., can be represented using a collection of (smooth) curves
and an associated set of additional attributes. The recovered arterial
surfaces not only help produce a better reconstruction, but also help
capture high level characteristics of the shapes to facilitate easy,
intuitive, and powerful edits.

We represent each tubular section as a central curve skeleton and
an associated set of cross sections. We call this deformable model
an arterial snake, and parameterize it as a mesh S, consisting of a
curve and a set of cross section curves (see Figure 4). Automatically
recovering a network of interwoven arterial snakes is challenging,
even ill-posed, since we aim to recover the underlying topology
from scan-quality, poorly sampled, and incomplete inputs. We ob-
serve that reliable extraction of underlying curves is possible in
parts away from intersecting and overlapping regions. Local curve
topology can then be systematically propagated, merged, and con-
solidated to yield a plausible curve network representation of the
underlying geometry. We alternate between topology recovery and
geometry reconstruction as we progressively fit to the input data
(see Figure 3).

Starting from the set of pointsR, we first estimate a local tangential
direction vector at each point and identify regions with consistent
vector directions. We fit small arterial snakelets Sj to the points
and their directional estimates from the marked regions using an en-
ergy optimization. Next, we grow these arterial snakelets based on
the input data. For this purpose, we use a diffusion operator based
on a tensor field formulation to globally and smoothly propagate
reliable vector directions to the unreliable regions. Guided by the
point samples and the globally consistent tensor fields, we grow the
snakelets Sj in an anisotropic fashion, favoring growth direction
along the curve skeleton directions. Simultaneously, in the topology
correction step, we merge snake pairs whose end points are spatially
close and whose direction vectors agree. We perform this merging
by mapping Sj to a higher dimensional similarity space (positional
and tangential information), and identifying proximal pairs. Note
that an analogous growth guided solely by the input data points is
unreliable and leads to poor topology reconstruction. We use the
generated vector field, which integrates global information, as a
better scaffold to recover consistent topological information, while
we use the sample points to help estimate geometric attributes. We
alternate between the topological and geometric phases to extract a
collection of arterial snakes representing the input samples.

The curve network, recovered from the noisy incomplete data, of-
ten contains artifacts, noise, and irregularities. We correct these
noise irregularities learned from the corrupted data in a regulariza-
tion phase. In this step, we project curves to smooth polynomial ap-
proximations, enforce planarity for near-planar curves, snap to tan-
gent continuity, and enhance symmetries between curve elements.
The resultant network of arterial snakes not only explains the in-
put data, but also encodes the characteristics of the shape learned
during the analysis phase.

4 Algorithm

We first describe how we explicitly represent the arterial snakes
and evolve them to recover the curve network topology of the input
point cloud data R. We then describe the objective function we
designed to grow and fit the snakes guided by R. Note that the
algorithm extracts topological connectivity and estimates geometric
attributes for the snakes, while also estimating the quality of the
underlying data.

Arterial snake representation. Similar to traditional swept sur-
faces we represent an arterial snake S by a generating cross sec-
tional curve G along a skeletal curve C. We discretize skeletal
curve C as a polyline of nodes {C1, C2, · · · , Cn}, with C1 = Cn

for closed curves. The cross section Gi at each key node Ci is
represented as a planar (closed) polygon with m points Gi =
{G1

i , G
2
i , · · · , Gm

i }. The corresponding arterial snake surface S
is represented as a mesh, called skin mesh, with vertices {Gj

i}. The
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Figure 4: We represent an arterial snake surface to be generated by
sweeping cross sectional curvesGi along a skeletal curve C. Both C
and Gi are represented as polylines. The mesh surface S is called
skin mesh and the surface polylines Sj are called skin curves. A
rotation minimizing frame is maintained along the skeletal curve.

surface polylines Sj = {Gj
i} are called skin curves (see Figure 4).

To position the cross sectional curves for a snake, we use the tan-
gents to its skeleton curve C as the local z-axis. We arbitrarily as-
sign a vector in the plane containing G1 as the local x-axis at C1,
and then propagate the local coordinate frame to other cross sec-
tional curveGi along the skeletal curve C using a rotation minimiz-
ing formulation [Wang et al. 2008].

4.1 Initialization

Let the given scanning data be R = {pi,ni}. The normal vectors
ni are either obtained during the acquisition process, or locally es-
timated using a least squares local plane fitting [Mitra et al. 2004].

Cross section planes. We first detect sections of the input that
can be locally approximated by tubular sections. Motivated by the
work of Tagliasacchi et al. [2009], we characterize such parts as
a subset of points A lying close to a plane with unit normal di-
rection v such that the normals associated with the data points are
orthogonal to v in a least squares sense. Thus we solve the op-
timization minv

∑
pi∈A

(vT ni)
2 subject to ‖v‖ = 1, which re-

duces to finding the smallest eigenvector of the covariance matrix∑
pi∈A

nin
T
i . Note the sign of v is not important. For any point

pi ∈ R, we initialize its cutting plane πi as a plane passing through
pi and containing the normal ni. Then we identify the subset A of
point set R that is near to the plane πi and belongs to the same
connected component as pi (point pairs are considered connected
if their Euclidean distance is less than 0.1% of the bounding box
diagonal length of the object, e.g., green points in Figure 5-left).
Using the subset A, we re-estimate the cutting plane normal vi,
and then re-estimate points close to the current cutting plane, and
alternate between the two steps. In our experiments, for each point
we run the process for a maximum of four iterations. In the end, we
obtain a local directional estimate vi for each point pi as described
above (see Figure 5-right). In spirit, this is similar to the first step

iteration# 0 iteration# 1

Figure 5: Computation of cross-section plane for each sample
point. Starting from an initial cutting plane (left), we iteratively
re-estimate the plane (right) using a local optimization.

of the method proposed by Tagliasacchi et al. [2009] to compute
the cutting plane for each data point and assign the normals of the
cutting planes as the vector field over the data points. We, however,
do not compute the skeleton. Instead we generate a vector field over
the data points that is a key component to guide the evolution of the
snakes.

Filtered vector field. The orientation vectors in tubular sections
are consistent and well-behaved, while they are unstable and noisy
near joints and crossings of multiple snakes. For each point pi, we
compute the average vector n̄i of the point vectors associated with
the cross section plane πi. If the angle between n̄i and the normal
vi of πi is larger than a threshold δa (10 degrees), we filter out such
directional estimates. We also remove directional estimates from
points with high variance δv (> 5) among the directional vectors of
the points associated with the cross-sectional plane πi. After filter-
ing out inconsistent directional estimates, we are left with regions
of the input data that can be well approximated by small arterial
segments, or snakelets (see Figure 6-left). In contrast, in the un-
reliable parts, typically around junctions, we have only points pi

without any associated direction estimate vi. As the directions of
the vectors affect subsequent interpolation, we first convert the vec-
tor field into a tensor field [Zhang et al. 2007]. At each reliable
point pi we create a tensor Mpi = vpiv

T
pi

, and then smooth and
spread the tensor field to the other points without associated direc-
tional estimates by solving a global system. Specifically, we define
a local Laplacian operator at each point and its neighbors, and thus
obtain a system of global Laplacian equations [Liu et al. 2007a]
over the points. We use an orientation-aware distance to build the
graph-relationship on the input point set as presented by Tagliasac-
chi et al. [2009]. We set high weights on constraints derived using
points with reliable directional vectors. By solving the resultant
sparse linear system we obtain tensors at all the unassigned points,
and thus their associated vectors. This information is later used for
evolving snakes over curved parts.

Snakelets. Points from R with reliable directional estimates are
first grouped into clusters based on how well their directionals agree
and based on their spatial proximity (see Figure 6-left). We ini-
tialize each such group S with an initial snakelet. In order to ro-
bustly handle noise and missing data, we first restrict the snakelets
to have circular cross-sectional profiles, similar to traditional canal
surfaces. For each point pi ∈ S, we perform a circle fit through pi

in its cross-sectional plane πi, to get the fitted circle center as ci.
The point set {ci} gives a dense sampling of the skeletal curve of
S. We resample the initial skeletal curve using a distance spacing
of σ, 0.2% of the bounding box diagonal length of the object, to
get a polyline skeletal curve C. The corresponding cross-sectional
curves Gi are initialized using circular profiles computed in the cir-
cle fitting stage. Thus in the unambiguous regions of the datasetR
we have initializations of snakelets (see Figure 7-leftmost), which
are subsequently evolved, grown, and merged to form the snake
network.

4.2 Topology Recovery

In this section, we use the initial snakelets to extract layered arte-
rial snakes using the incomplete point cloud data R for guidance.
In absence of any segmentation of the input point cloud, direct ap-
plication of state-of-the-art skeleton extraction methods [Au et al.
2008; Tagliasacchi et al. 2009; Cao et al. 2010] produce unsatisfac-
tory results (see Figure 11-bottom). Typically resultant curve net-
works are patchy, only explain the structure of the arterial objects at
the non-intersection regions, and fail to capture the continuity and
characteristics regularity of the data. Post-processing such curves
to fix their deficiencies is likely to involve a variety of specialized



Figure 6: Reliable directional vectors (in yellow) are propagated
by solving a global Laplacian equation as directional estimates (in
blue) for other points.

rules which seem to be unreliable and infeasible. Instead we take a
systematic approach of starting from a valid collection of snakelets
and evolving them while maintaining their validity.

For each snake, we call the sample points that drive its evolution
its matching points. In our setting, a key challenge is to simulta-
neously partition the data into different matching point sets, while
fitting suitable snakes to the partitions. While it is relatively easy
to decompose two arterial objects if they intersect transversely, it is
harder to reliably detect tangential intersections (see Figures 6 and
7). Our snakelet growing scheme is designed to robustly handle
such situations.

Our snake evolution algorithm has the following properties: (i) un-
like classical deformable models [Duan and Qin 2004; Sharf et al.
2006], our deformable arterial snakes preserve the arterial shapes
during their evolution; (ii) each arterial snake decides whether to
grow along the center curve or stops to handle various kinds of
ambiguity; (iii) the method robustly handles input data containing
noise, outliers, cracks, and missing pieces.

Matching points. We iteratively grow each snake continuing
along its skeletal curve. Each vertex of a snake is assigned to
a matching point in the input data set. For each skin vertex, we
shoot a line along its normal and find the nearest data point within
a threshold (0.5%). Some vertices may not have any matching
point. If a matching point has a normal that is inconsistent with
the skin vertex normal (within a threshold 10 degrees), we discard
the match. At the beginning, we find the matching points for the
vertices of snakelets. Say a cross-sectional ring of points Gn has
matching points Mn. When we grow the end ring of the snake,
we use Mn and the underlying directional field to seed a setM of
reliable matching points for newly growing end of the snake.
Snake growth. Suppose the current snake is given by a skeletal
curve {Ci} with corresponding cross-sectional profiles {Gi}, and
we use rotation minimizing frames to propagate the local coordinate
system. At one end we introduce a new skeletal node Cn+1 :=
Cn + αTn with the corresponding cross-sectional curve Gn+1 :=
Gn, where Tn is the growth unit vector at Cn and α is the growth
step. The growth step varies inversely with curvature radius κ of
its skeletal curve near its evolving fronts. More specifically, we use
α := γmax(1,

√
l/κ) where γ is the growth rate and l the current

length of C.

Intuitively, the growth direction Tn can be estimated by the tan-
gent vector T 1

n of a cubic Bézier curve that is obtained by fitting
the four successive nodes at Cn. If a snake has small curvature at
its end, this estimation process is reliable. But for a high curvature
end node, we use the underlying directional vectors to adjust the
growth direction, as follows: We detect the directional estimates of

the matching points of nodes ofGn. If they are consistent, we com-
pute an average directional vector T 2

n . If they are inconsistent, then
the data points are unreliable, and we choose to ignore their effects,
i.e., we set T 2

n = 0. We set Tn ← (T 1
n + T 2

n)/2. We then find the
matching points for the vertices on Gn+1. If the matching points
belongs to M, we give them higher weights. Otherwise, we set
smaller weights. Note that both the matching points and the vector
fields are used to drive the snake evolve during the geometric opti-
mization. The vector field is a key component to guide the snake to
evolve, especially at the joint regions and incomplete regions.

Similarly, we extend the snake at its other end. We fit the extended
snake to the input data using a geometric optimization (see Sec-
tion 4.3). We continue extending each snake and performing geo-
metric optimization, as long as the data fitting validates the exten-
sion. For validation we give higher weights to the point positions
from R, and rely on the directional estimates to a lesser extent.
While optimizing for vertex positions of the evolving snakes, we
only locally refine the positions of the mesh vertices at the evolving
fonts, and freeze the inner vertex locations of the snakes that have
been previously optimized.

Competing snakes. The success of our algorithm largely de-
pends on critical topological events related to how the snakes
evolve, grow, and merge to reliably extract an inter-woven snake
network. We allow multiple snakes to grow simultaneously and re-
solve their interactions only when a collection of snakes come close
(see Figure 7). Note that the input data is typically worse near inter-
sections and overlap regions, making any local scheme unreliable.

Initially we start growing all the snakelets simultaneously by acti-
vating them. We consider both the curvature and the length of the
snake to determine its growing speed. Generally, the longer and
the flatter the snake, the faster it grows. In each iteration, snakes
decide to grow, freeze or even shrink to handle various kinds of
ambiguity based on the following strategies: (i) When a snake has
little supporting data to justify growing, we mark it as inactive and
freeze its growth. Thus, when a snake arrives at the data boundary
or an incomplete region and cannot grow any further, we mark it
as inactive. (ii) When two snakes meet, we mark both of them to
be inactive, and freeze their growth. (iii) When two snakes S1 and
S2 meet with the same snake S∗, then we reactivate S∗ and grow
it backward, i.e., shrink S∗. Intuitively, this makes way for S1 and
S2 allowing them to continue to grow. Note that a snakelet affects a
neighboring one only if both of them have open ends that are close
by. Thus by shrinking S∗ we allow S1 and S2 to grow, and sub-
sequently S∗ can grow back without being affected by S1 and S2

Figure 7: Topology recovering of curve network. Starting from
reliable snakelets, the arterial snakes grow simultaneously while
competing with each other. Longer and flatter curves grow faster.
Snakes may retract to make way for others to grow first, and ad-
jacent snakes with suitable tangent conditions merge together (see
Section 4.2).
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Figure 8: Our system can analyze and extract the various arterial structures from a scan input with noise, outliers, and missing parts. The
topology of the curves is recovered by our algorithm and the the final reconstructed model with the set of arterial surfaces is obtained by
geometry regularization.

that no longer have neighboring open ends (see Figure 7 and the
accompanying video).

Snake merging. When all snakes are marked inactive, we look
for potential snake pairs to merge. We connect two snakes if their
end points are close (within 0.1 of the bounding box diagonal length
of the data set) and the respective tangents to the skeletal curves
near their end points agree (within 15 degrees in our implementa-
tion). This allows the snakes to bridge small gaps without sufficient
data points to enable growing. Note that if two snakes overlap at
a sharp angle, e.g., like in a cross, at this stage we may get two
snakes that interpenetrate and explain the underlying data. We do
not explicitly resolve such penetrations since in certain cases, e.g.,
welded metal (see Figure 1) such behavior is expected, while for
others like cane penetrations are not realistic (see Figure 9-top).

4.3 Geometry Fitting

In our iterative scheme, during the evolution and growth of a snake
C, we employ geometric optimization to refine the snake parame-
ters to better explain the input R. While the connectivity remains
fixed, we fine tune the vertices Gj

i of the skin mesh S by associat-
ing to each vertex an affine matrix Aj

i (with 12 degree of freedom
per vertex). We introduce three terms to capture the conflicting re-
quirements of the problem, and solve the resultant optimization.

Data error. We approximate the distance of the snake S from the
pointsetR as:

Ed :=

n,m∑
i,j

wj
i

∥∥Aj
iG

j
i −R

j
i

∥∥2
, (1)

where Rj
i is the matching point in R of Gj

i . The weights wj
i in-

dicate confidence in data, and is proportional to the confidence in
local directional estimates. In the tubular region, it is easier for skin
vertices to get reliable corresponding matching points. In contrast,
around a joint region, only a few skin vertices get assigned to reli-
able matching points, while others being in the interior of the joint
region, do not get any matching points, and thus do not affect the
data term (see Section 4.2).

Smoothness error. We expect coherence during evolution of the
arterial snakes, and enforce spatial coherence between transforma-
tions at neighboring snake vertices using a smoothness term:

Es :=
∑
(i,j)

‖Ai −Aj‖2F , (2)

where ‖·‖F is the Frobenius norm (see also [Allen et al. 2003]), and
adjacency is based on connectivity of the underlying snake mesh.

Fairness error. Our arterial surfaces robustly handle thin features
in the input data. This is made possible by our prior that the input
model is dominated by essentially 1D smooth curves, thus allowing
us to automatically reason about intersections, tangential meetings,
proximal curves, etc. To prevent snakes from undesirable wiggling,
we add a fairness term as:

Ef =
∑

i
‖Ci − 1

2
(Ci−1 + Ci+1)‖2+

1
m

∑
i,j
‖Gj

i −
1
2
(Gj

i−1 +Gj
i+1)‖2+

1
m

∑
i,j

((Gj
i − Ci) · ti)

2 +
∑

i
‖Ci − 1

m

∑
j
Gj

i‖
2,

(3)
where the terms enforce center curve smoothness, skin curve
smoothness, planarity of cross sections, and centricity of skeletal
curve with regard to the skin curves, respectively. The tangent vec-
tor ti of C atCi is estimated analytically using coefficients of a least
squares cubic Bézier curve locally fitted to five adjacent points on
the current skeletal curve.

Total error. The final optimization takes the form:

min
{Aj

i
}
(ωdEd + ωsEs + ωfEf ), (4)

where the weights ωd, ωs, and ωf are tuned to guide the snake
optimization. The data error term drives the snakes to evolve to
the target point data. Even if there are some vertices on S that do
not have any matching points on R, minimization of the fairness
error helps keep their cylindrical structure. In a final fitting stage,
we geometrically refine the network of arterial snakes with inferred
topology to better fit the input data R. During the intermediate
stages of snake evolution, we use the terms pertaining to individual
snake terms for fine tuning positional estimates.

As the evolution of the arterial snake finds the correct topology of
the lying arterial object, we perform the optimization using Equa-
tion 4 with weights ωd = 1, ωs = 10, and ωf = 0.5 while evolving
the snakes, and set larger value of ωf = 5 to obtain a regularized
mesh in the final fitting stage.

Regularizing snakes. We extract the network of arterial snakes
based on the input dataR, which is often noisy. Although the fair-
ness energy prevents the snakes from wiggling under the influence
of noise, global relations present in the original models may not be
well represented in the recovered snakes. In order to regularize the
individual arterial snakes, we project their skeletal curves to least
squares fitting planes, if the fitting errors are small. Subsequently,
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Figure 9: The reconstructed results produced by our algorithm
from two scanning data of real models.

the planarized skeletal curves are projected to lines, or circles if the
corresponding fitting error are negligible. Otherwise we smoothen
the skeletal curves using cubic spline fitting. If snake pairs are
nearly tangent, i.e., they mutually intersect at close by points, we
locally move the snakes to enforce tangency relation (see Figure 8).
Finally, we detect symmetry relations between the extracted snakes,
and make such global relations exact using a simple symmetrization
based deformation [Mitra et al. 2007] (see also [Gal et al. 2009]).

Implementation details. The positions of vertices can be repre-
sented as the linear function of the elements of the affine matrices
as the initial vertex positions are known. In our optimization we op-
timize all the affine transformations instead of the vertex positions.
The minimization of the total energy amounts to solving a large lin-
ear system with 12nm variables. We use an iterative Gauss-Newton
algorithm to solve our unconstrained least squares problem. Fur-
ther, we optimize for affine transformations associated mainly for
the vertices at the front of the evolving snakes leading to an opti-
mization with O(m) variables. Figure 7 illustrates evolution of an
arterial snake network with successive iterations.

Our algorithm alternates between topology and geometry optimiza-
tion. While the skeletal curve connectivity captures the network
topology, we use the cross-sectional profiles to represent geomet-
ric details. We use a coarse-to-fine evolution process where, in
the topology optimization phase, we sample points from the input
R and coarsely represent the cross sectional profiles using fewer
nodes. During the geometry optimization phase, we upsample
the cross-sectional profiles, and optimize for the vertex positions
guided by the input dataR.

5 Results
We have tested our algorithm on a number of models, both real-
captured models and synthetic data sets, under varying amounts of
noise, outliers, and missing parts.

Our system can analyze and extract the various arterial structures
from a scan input with noise, outliers, and missing parts, as shown
in Figure 8. From the input scanning point cloud, the algorithm
successfully recovers the layered arterial surfaces by the competing

Figure 10: Since we represent cross-sectional profiles of arterial
snakes using closed polyline-segments, our framework can nat-
urally handle varying cross-sectional profiles. In this syntheti-
cally scanned dataset the gradually varying cross-sections (evolv-
ing from rectangle to circular profiles) are correctly identified.

growing scheme. After regularizing the arterial network we obtain
the final reconstructed model. In this example, the different arte-
rial snakes intersect and meet with varying complexity. Generally,
it is easy to handle the simple transversal intersection cases, even
using local schemes. However, it is challenging to resolve multi-
ple tangential intersections with large penetrations. Our algorithm
successfully handles such cases leading to near-perfect reconstruc-
tion. In this example, we use input prior, and fit a rectangular cross-
sectional profile in the final fitting stage.

Figure 9 shows the reconstructed results produced by our algorithm
from two scanning data of real models. In the first example, two
arterial snakes overlap partially and our algorithm correctly recon-
structed the layer relationship. In the second example, our algo-
rithm easily detects the curve network and the symmetries between
the curves. Figure 1 shows a much more challenging example
where a bunch of intersection cases occur in the model. Our al-
gorithm can also recover the correct curve network and reconstruct
the arterial surfaces.

MPU reconstruction
[Ohtake et al. 2003]

kernel-regression reconst.
[Oztireli et al. 2009]

scale axis
[Miklos et al. 2010]

curve skeleton
[Tagliasacchi et al. 2009]

Laplacian contraction
[Cao et al. 2010]

Poisson reconstruction
[Kazhdan et al. 2006]

Figure 11: Comparison with (top) state-of-the-art surface recon-
struction algorithms and (bottom) curve skeleton definitions on
noisy incomplete point sets (using respective author implementa-
tion). For scale-axis comparison we used [Oztireli et al. 2009] to
obtain an initial surface. Unlike general skeleton extraction meth-
ods, we exploit the prior of input models being 1D structures to
obtain structured skeletal backbone. Corresponding results using
our algorithm are presented in Figures 9, 1, 8 and 3, respectively.
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Figure 12: Evaluation the accuracy and robustness of our algorithm. We adopt our algorithm on various quality of scanning data in
the presence of noise, missing data, and outliers. First row: adding different amount of synthetic Gaussian noise to the data. Second
row: (left) different amount of missing parts and (right) different amount of outliers.

To evaluate the accuracy and robustness of our algorithm, we use
various quality of scanning data in the presence of moderate noise,
moderate amount of missing data, and moderate outliers, as shown
in Figure 12. In the first test, we progressively add synthetic Gaus-
sian noise to perturb the point positions and then apply our algo-
rithm to compute the arterial snakes using exactly the same param-
eter settings. The upper row in Figure 12 shows the results of scan-
ning data with various amount of noise, 5%, 10%, 20%, 40%, re-
spectively. We can see that our algorithm is quite robust against the
medium amount added noise (less than 20%), and as expected the
failures are near regions with complicated junctions. It is interest-
ing to see that one of the snakes is broken in the case of 10% noise.
This is due to the failure of detection of snakelet at this part for
this data. The lower row of Figure 12 shows several reconstructed
results computed on the same scanning data with artificially parts
removed and outliers inserted in different amounts, respectively.

The arterial snake can represent any profiles including non-circular
profiles with varying tube width. In our implementation, for esti-
mating the initial tubular parts, we first extract the snake-skeleton
with circular profiles as this was found to be more robust on raw
scans. Subsequently, the arterial snakes are optimized for arbitrary
profiles by geometrically fitting the underlying cross-sectional pro-
files to the input data (see Figure 10).

The arterial snake based shape priors help us to robustly detect and
extract curve networks from poor quality scanned data. In contrast
it is challenging for existing methods to handle such data. Fig-
ure 11 shows examples of reconstructing surfaces from the data
points in Figure 9 using MPU method [Ohtake et al. 2003] and
Poisson surface reconstruction [Kazhdan et al. 2006]. With sig-
nificant data parts missing, the methods fail to fill the surface at the
incomplete portions and produce many bulges in the results. Al-
though kernel-regression based reconstruction [Oztireli et al. 2009]
produces significantly superior results (using σr = 1, σn = 0.75),
but the method does not attempt to recover the underlying structure

of the data. Note for scale-axis network [Miklos et al. 2010], we set
δ = 0.005.

Our approach treats the geometric details as multiple layers of ar-
terial objects, and provides an extended ability for high quality ge-
ometric editing and semantic structure reusing. After covering the
network of arterial objects, we can easily edit the center curves to
composite new surfaces, see Figure 13. Specifically, we can ma-
nipulate and edit the shapes of the curves, change layering relation-
ships, and the shapes of cross sections (see also the accompanying
video).

Our algorithm can also handle detailed geometric structures like
extracted reliefs (see Figure 14). Given a relief surface, we use the
method of Zatzarinni et al. [2009] to extract the relief from the base
surface. The curve structure of the relief is analyzed and discovered
by our algorithm, enabling curve-level detail manipulation.

The running time of our algorithm depends on the number of data
samples R, the number of polygonal vertices m on profiles of
snakes, and the growth rate γ of the snakes. In our implementa-
tion, we set m = 16 vertices on the profiles and the growth rate γ
is set as 5% of the bounding box size. We implemented our system
on an Intel 2.8GHz CPU with 2G RAM. For input data with around
100K points, the system typically takes around 5 minutes. How-
ever, our method being output sensitive can take longer on models
with more complicated pattern network, e.g., the metal-stool exam-
ple, Figure 1, took about 10 minutes, which is small compared to
about 40 minutes of efforts to scan the stool from six views.

Limitations. Our algorithm is targeted towards input models that
can be well represented by 1D curves. In parts where 2D surfaces
exist, the algorithm fails to get started as we cannot detect any initial
snakelets, e.g., in Figure 1 the algorithm remains oblivious to the
thin disc like structure on the top of the stool. Also in presence of
large missing parts and significant amount of noise, the algorithm
breaks down as it cannot create a useful directional field to guide



Figure 13: Extracted arterial snake networks provide an easy, in-
tuitive, and powerful editing metaphor involving snake-level geo-
metrical edits, addition/deletion of snakes, and local layer order-
ing swapping. Such manipulations are challenging and tedious to
perform using most shape deformation tools.

the evolving snakes (see Figure 12).

In many objects (see Figure 2-right), the 1D ornamental structures
are only part of the object. In such cases, we expect a segmenta-
tion to classify the data into parts that are suited for arterial-snake
reconstruction and parts where standard surface reconstruction al-
gorithms can be used. Further work is required to automate this
phase.

Finally, although in principle our algorithm can be used to re-
construct very thin wire like structures, e.g., blood veins and hair
strands, in most datasets our approach fails due to insufficient data
quality. Understanding suitable sampling conditions for our algo-
rithm is an interesting future direction.

6 Conclusion and Future Work
We have presented a novel approach for analyzing and reconstruct-
ing the arterial surfaces and decomposing them into a set of seman-
tically useful arterial components. The key to the decomposition is
to use the deformable snake model, which is inflated into the inte-
rior of the arterial component as much as possible. The structures
of the individual arterial components are automatically determined
using a simultaneous evolution scheme. The curve network repre-
senting the underlying surface is used for various applications in-
cluding shape completion, reconstruction, topology repairing, and
intuitive manipulation.

Our current algorithm has several limitations that we wish to ad-
dress in our future work. We suppose the two arterial components
intersect with each other at the overlapped region. It has difficul-
ties handling surfaces with complex features and details which are
caused by fuzzy surface boundaries, interleaved geometric details
and perception-driven ambiguities. A possible way to handle such
arterial surfaces may be by considering more complex composi-
tion operations at the overlapped regions such as linear blending or
matting. Furthermore, we also would like to study other types of
evolving surfaces with more complicated structures.
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