
Intuitive Design Exploration of Constrained Meshes

Xin Zhao Cheng-Cheng Tang Yong-Liang Yang Helmut Pottmann

KAUST

Niloy J. Mitra

University College London

Abstract. Based on the recent work of Yang et al. [2011], we propose several
intuitive tools to quickly create new architectural freeform shapes starting from a
single input design, while conforming to a set of prescribed constraints and opti-
mizing for specified quality measures. We allow the user to control the final shape
by prescribing desirable curves on the final shape, access the desirable regions of
the constrained mesh manifold using smartly selected 2D mappings, and computa-
tionally generate multiple design alternatives that satisfy the user hints. These tools
allow the designer to intuitively navigate the constrained mesh manifold and pick
desirable shapes using a design gallery interface. We demonstrate the efficiency of
the proposed tools using various case studies.

1 Introduction

Designing architectural freeform surfaces remains challenging. The design pro-
cess broadly consists of two phases: a creative phase where the designer comes
up with a well-conceived meaningful 3D shape, and a rationalization phase where
the initial geometric design is optimized to satisfy material-specific fabrication and
environment-related global constraints. These two phases require complementary
skills: the creative phase requires a mix of artistic talents, conceptual design, aware-
ness of the project theme; while, the rationalization process, which optimizes the
initial design such that the geometric form can be actually constructed, requires un-
derstanding of various engineering and fabrication constraints, e.g., material used
for the surface panels, layout of the support network, etc.

Although such a two-stage approach is common, the separation results in sev-
eral complications. The key difficulty is that any post-rationalization that optimizes
the geometry to conform to non-linear constraints (e.g., element faces should be
flat, floor-curves should be planar, etc.) changes the initial design in ways that are
difficult for the designer to foresee. In a typical scenario, the designer starts with
an initial 3D geometry that is rationalized by modifying the geometry, thus pos-
sibly disrupting the original design intent. Hence, the designer specifies further
modifications, which in turn undergo further changes due to rationalization, and the
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Figure 1: One option to enable curve-based constrained mesh deformation is to directly
deform the mesh using curve-based mesh deformation tools and then use an appropriate pro-
jection procedure to restore the original constraints. Such a workflow does not facilitate
intuitive exploration of design possibilities as the user has to manually account for non-linear
projections often resulting in artifacts and undesirable fold-overs. We show a typical example
using PQ meshes, where each mesh face is constrained to be planar. Insets show color-coded
deviation from desirable planarity measure with blue denoting near planar regions.

process is iterated until the designer is satisfied. Such an iterative process is slow,
expensive, hinders creative form-finding, and often encourages conservative rule-
based designs. For example, in the case of PQ (planar quad) meshes, i.e., meshes
with planar quadrilateral faces, optimization based rationalization methods are pop-
ular [Liu et al. 2006; Liu et al. 2011; Zadravec et al. 2010]. Effectively, such an
algorithm projects the input geometric shape to a PQ mesh. Although the rational-
ization method works well when the initial design is close to a PQ mesh, in other
cases the projection can produce significant and unpredictable changes, especially
due to the non-linearity of the face constraints (see Figure 1). Such changes can
be counter-intuitive and difficult to manually account for. Similar problems arise
in presence of other constraints, e.g., floor curves should be planar, characteristic
curves to be preserved, etc. Effectively, in absence of appropriate computational
support, the designer is left guessing what are the achievable shapes that respect the
specified constraints. This makes form-finding difficult.

Recently, Yang et al. [2011] introduced constrained mesh manifolds consisting
of meshes that are characterized by the associated constraints involving the mesh
vertices (connectivity is kept fixed). Each variant of the input mesh is simply rep-
resented as a point in a high-dimensional manifold (see Figure 2). Among all such
possible shapes only those that conform to certain mesh qualities such as fairness
are interesting. The main goal of the work is to characterize the useful design space
consisting only of such desirable meshes and then efficiently explore them.

We use the above framework to present novel design tools allowing the users to
control target designs via curve-level design handles. We generate a family of design
possibilities, where each member satisfies all the input set of constraints. Such a
guided exploration interface enables design space navigation that is currently very
difficult using any existing approach. We evaluate the effectiveness and useability
of the proposed computational design tools using various case studies.
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Figure 2: Given a single input mesh along with a set of constraints that should be preserved
(e.g., each mesh face should be planar as in this example), we construct a constrained mesh
manifold to capture all meshes having the same connectivity as the input mesh while con-
forming to all the input constraints within allowable error margin. We develop intuitive tools
to restrict exploration to only certain desirable parts of such constrained mesh manifolds.

2 Overview

Given a single architectural surface mesh with a set of non-linear constraints, we
provide the user with several convenient tools to quickly create new design varia-
tions directly from the input. The new meshes are generated such that they fulfill
the shape preference of the user and also the prescribed constraints (see Figure 3).

In summary, we develop

• an intuitive curve editing metaphor to interactively generate new constrained
meshes, and

• a fast and automatic sampling algorithm to generate many variant designs
while satisfying the prescribed constraints.

3 Background on the Design Space of Constrained Meshes

Let us briefly recall some essentials of the mathematical framework developed by
Yang et al. [2011] for the exploration and navigation of design spaces of constrained
meshes. Given a single input mesh that meets the constraints, the useful design
space contains all meshes that share the combinatorics and constraints of the input
mesh, while having desirable mesh qualities that are mostly related to mesh fairness
and other soft constraints.

Starting from a single input mesh, the family of meshes that share the same
mesh connectivity is simply represented by their varying vertex positions, i.e., a
point x = (v1, . . . ,vn)∈RD, where D is 3 times the number n of deformable vertices
vi. Then any vector d ∈ RD defines a deformation field on the mesh producing the
new mesh (x+d). For large steps in the tangent space, we rely on the availability
of a projection operator to return to the constrained mesh manifold (see Figure 5),
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Figure 3: Typical workflow using our curve deformation based shape sampling. Starting
from a given mesh (a), the user selects a control curve (b), drags a control point (c) to deform
the curve (d). We first generate a new mesh (e) constrained by the deformed control curve.
Further, we present a design-gallery styled exploration interface using a shape space sampling
strategy that generates more possible designs (bottom). Each such design contains the user-
prescribed curve while still satisfying the original set of constraints. These tools make form-
finding more efficient since the designer only explores the useful part of the mesh manifold
and does not have to manually account for non-linear effects in post-rationalization steps.

e.g., for PQ meshes we use a rationalization as proposed by Liu et al. [2006]. Our
framework heavily relies on those deformations that keep the constraints in first
differentiation order; for a second order analysis we refer to Yang et al. [2011].

Let Ei(x) = 0, i = 1, . . . ,m, denote the constraints imposed on a mesh x, where
|Ei(x)| are practically meaningful deviation measures. We assume to have m mostly
non-linear constraints. From a mathematical perspective, the only requirement on
the constraint functions Ei(x) is that gradients ∇Ei are well defined. The corre-
sponding constrained mesh manifold M is then formed by those meshes (or points
in RD) which satisfy all constraints, and thus it is the intersection of the m surfaces
Γi = {x∈RD |Ei(x) = 0, i= 1, . . . ,m}. Hence, M is in general of dimension D−m.

v1

v2 v3

v4

Figure 4: In the context of PQ meshes, we measure deviation of planarity for each quad
face as the signed distance between its two diagonals. In our examples, for glass panels of
dimensions 2m×2m, we assume a diagonal deviation margin of 10mm as acceptable.
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Figure 5: In our framework, we restrict navigation to local tangent planes of the underlying
constrained mesh manifold. While this leads to interactive performance, approximation errors
can appear along long traversals on the tangent space as the meshes leave the constrained
mesh manifold. We use appropriate projection operators to return back to the mesh manifold
with little visible geometric difference, which is important in preserving the desired design.
In this example we use PQ meshes to illustrate this behavior.

We illustrate our framework on the specific example of planar quad (PQ) meshes,
where the non-linear constraints are the (deviation from) planarity measure associ-
ated with each face. As this measure Ei(x), we use the signed distance between the
face diagonals for any quad face fi := {v1,v2,v3,v4} of mesh x (see Figure 4),

Ei(x) =
( v1+v3

2 − v2+v4
2

) (v1−v3)×(v2−v4)
‖(v1−v3)×(v2−v4)‖

. (1)

The definition directly correlates to tolerances typically allowed by various fabrica-
tion technologies.

3.1 Tangent space of the constrained mesh manifold

A given mesh corresponds to a point x0 ∈M . The tangent space of M at x0 is the
intersection of the m tangent hyperplanes to the surfaces Γi. The normals of these
tangent hyperplanes are given by the gradients ∇Ei(x0) and therefore the the normal
space of M at a point x0 is spanned by the gradients ∇Ei(x0), i = 1, . . . ,m. At any
regular point of M , i.e., where the gradients are linearly independent, we have a
normal space of dimension m and a tangent space of dimension D−m. The tangent
space TM (x0) to the constrained mesh manifold M is attached to the point x0 and
spanned by vectors t orthogonal to each of ∇Ei(x0),

TM (x0) := {x0 + t | ∇ET
i (x0) · t = 0 ∀ i = 1, . . . ,m}. (2)

Suppose the basis of the normal space at the current point x0 is {n1,n2, ...,nm} and
the basis of the tangent space is {e1,e2, ...,eD−m}. Then any tangent vector can be
expressed in the form t = ∑ j u je j where u = [u1 u2 . . . uD−m]

T ∈ RD−m parameter-
izes the tangent space. Note that t represents a mesh deformation field preserving
constraints up to first order.
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3.2 Accessing the design space

Unfortunately, a significant portion of the constrained mesh manifold M will be
useless for our application, since the corresponding meshes do not meet the expec-
tations on other mesh qualities such as fairness. The part of M which meets these
additional requirements is the actual design space. We now show how to reach this
design space and how to navigate in it. Here, we assume that the input mesh which
has been used to define M lies in the design space.

We describe mesh aesthetics and other soft mesh properties with help of func-
tions F(x) defined on the embedding space RD (not just restricted to the mesh man-
ifold). We will require a second order analysis, and thus have to look at the second
order Taylor expansion of F(x) at mesh x0,

F(x) = F(x0)+∇FT · (x−x0)+
1
2
(x−x0)

T ·HF · (x−x0)

+ o(‖x−x0‖2), (3)

Here HF denotes the Hessian matrix of the function F at x0. If we restrict navigation
of the mesh manifold to the tangent space TM (x0), we are restricted to points of the
form x = x0 +∑

D−m
i=1 uiei. The function F(x) can then be expressed in terms of the

parameter vector u as

F(x0)+
D−m

∑
i=1

(∇FT · ei)ui +
1
2
u

T ·Hr
F ·u+o(u2). (4)

Here Hr
F is the so-called reduced Hessian of HF with respect to the tangent space.

It is of the form Hr
F = [e1 e2 . . . eD−m]

T HF [e1 e2 . . . eD−m].
As quality functions F we use fairness energies Ff air for the families of polylines

an aesthetically pleasing mesh can be decomposed into (away from extraordinary
vertices). Moreover, if our exploration should keep the mesh close to a reference
surface, we use an appropriate function Fclose. In order to see significant shape
changes, it is a good idea to look at local deformation fields that are as orthogonal
as possible to the reference geometry, which again can be described with an appro-
priate function Fortho. For details on these functions, we refer the reader to Yang et
al. [2011].

Finally, the functions Fi one wants to use in an exploration are combined with
desired weights λi into a single energy F = ∑i λiFi. Its reduced Hessian is then
simply

Hr(F) = ∑i λiHr(Fi). (5)

The reduced Hessian (even better, the intrinsic Hessian of [Yang et al. 2011])
is useful to identify deformation vector fields for exploration which do not change
the mesh quality too much. Recall that the eigenvalues of the intrinsic Hessian Hr

F
are the locally extremal second directional derivatives of the quality function F .
Assuming that the input mesh has high quality, all first directional derivatives of
F at x0 will be small, and thus a tangent vector of the mesh manifold which also
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Figure 6: Spectral analysis of the reduced Hessian matrices extracted from the input con-
strained mesh provides rich exploration possibilities. A pair of selected eigen-directions
(ti, t j) of the reduced Hessian exposes a 2D section of space of desirable constrained meshes.
During exploration, the user directly specifies a point on the spectral slice of the design space
while the system interactively displays the corresponding constrained mesh. The highlighted
curve denotes the user-prescribed curve that is guaranteed to lie on all the designed meshes;
further, each mesh face is constrained to be planar within allowable margin of deviation.

has a small second derivative of F will indicate a good exploration direction. We
therefore perform an eigen-analysis of Hr

F (see Figure 6). We restrict navigation to
the subspace of the tangent space TM (x0) that is spanned by the eigenvectors to the
lowest few eigenvalues of the reduced Hessian Hr

F (lowest 5% in our examples).
We now describe the tools we introduce to facilitate intuitive handling of archi-

tectural freeform shapes and subsequent sampling and exploration possibilities.

4 Designing in Constrained Mesh Manifolds

4.1 Curve as control handles

In freeform architectural design, a few curves may dominate the aesthetic character-
istic of the shapes (see e.g., [Mehra et al. 2009]). Hence, designers often take great
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Figure 7: Curve constraint: on a given mesh (black), when a curve (thick red) is specified as
a constraint by the user, vertices on the curve can only slide along the tangential directions.
This ensures that the resultant meshes (thin green on the left, and thin blue on the right) also
contain the desired curve.

care to prescribe such curves and expect the rest of the shape to blend in. Further, in
such a curve-based manipulation framework, the exact vertex positions on the pre-
scribed curves are less important, as long as the final shape carries the curves (see
Figure 7). Thus, a desirable design tool should (i) support curve-based control han-
dles for shape manipulation and (ii) allow the vertices to move along the prescribed
curves to enhance the aesthetic appeal of the final shape.

Yang et al. [2011] suggest vertex-based manipulation where the designer speci-
fies the final locations of a few vertices, say v j→ v′j (including fixed vertices), while
the optimization moves the free vertices to restrict the final mesh to the constrained
mesh manifold and maximize the prescribed quality function. For small displace-

Figure 8: A curve editing example: starting from an input PQ mesh (left), the user selects
and deforms a curve (middle-left, middle-right) to produce a final mesh containing the desired
curve while still satisfying all the input constraints (e.g., each mesh face remains planar) using
the corresponding constrained mesh manifold.
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ments, this amounts to solving for a tangent vector t ∈ TM (x0) as,

min
t

F(x0 + t) such that,

∇ET
i · t = 0, ∀ i = 1, . . . ,m; t j = v′j− v j, (6)

where t j denotes the j-th ‘coordinate’ of t (actually 3 coordinates, associated with
vertex v j).

In order to support curve-based manipulations, we allow the user to select and
deform the curve handles as follows (see Figure 8). The user first selects a sequence
of mesh edges as a discrete curve (i.e., a polyline) on the surface and then relocates
one or more points on such curves to guide the curve deformation. We then deform
the selected curve so that the point constraint(s) are satisfied using a differential
coordinate-based curve deformation approach proposed by Nealen et al. [2007].
Thus the user can prescribe a set of curve deformations of the form C j→C ′j (see also
Bouaziz et al. [2012] for a handle-based constrained mesh deformation framework
for shape exploration).

Figure 9: For large deformations, we move curve C to C ′ in multiple steps. In each step,
we create a temporary curve linearly interpolating the current and the goal curve with inter-
polation parameter λ. Note that the curve points are allowed to move on the tangent to the
interpolated curve at the corresponding new points.

One way to support curve-based interaction handles is to apply the vertex-based
deformation as proposed in Equation 6 to all vertices of the deformed curve. Such
an approach, however, can produce artifacts as the curve vertices are unnecessarily
fixed. Instead, for each vertex x ∈ C and a small displacement, we restrict the new
position xnew to an estimated tangent of C ′ at x′ via the constraint (xnew−x′)×t(x′)=
0. Here, t(x′) denotes a unit direction vector of the tangent (see Figure 9). Thus, for

Figure 10: Another curve based deformation of a PQ mesh. The user prescribed boundary
curves as control handles in this example.
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Figure 11: Curve editing with multiple control curves.

small steps, the vertices freely slide along the curves to produce a mesh with higher
quality measure.

Larger displacements of curves are handled in several steps. Instead of aiming
directly at C ′, we move towards a linearly blended polygon (1−λ)C +λC ′, which
is made sufficiently close by a suitable choice of λ < 1. We proceed in this way
(with increasing λ) until C ′ can be reached in a single step. The same framework
also handles multiple curves-handles (see Figures 11 and 10).

Note that since we only use first order information, for large deformations the
constraints may deviate beyond the allowable tolerance level, i.e., the final mesh
may be too far off the constrained mesh manifold. We then use a projection opera-
tion to bring the mesh back onto the manifold. For planarity constraints, we employ
the projection algorithms proposed in Liu et al. [2006].

4.2 Exploring the design space

Starting from the new mesh containing the deformed curve, we support exploration
of the neighboring design space within the constrained mesh manifold as in Yang
et al. [2011]. Note that in addition to the prescribed non-linear constraints such as
planarity, we also want to preserve the deformed curve as marked by the user (see
Figure 12). The simplest way is to just fix all the points on the curve and restrict ex-
ploration only to a constrained mesh created using the free part of the mesh. Such an
approach, however, unnecessarily restricts the solution space. Instead, we integrate
the curve constraints directly into the constrained mesh manifold.

Instead of fixing the whole curve, we allow the curve points to move along the
curve. Specifically, we constrain curve points to locally move along the tangent
direction. Suppose a vertex on a curve is v ∈ C , its current position is v0 and the
tangent is t(v0). Sliding along the curve then amounts to (v− v0)× t(v0) = 0. For
each such curve point, the zero cross product with its tangent can be simply satisfied
by adding two linear independently constraints.
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Figure 12: (Top) Starting from a constrained mesh (each mesh face is planar; also each of
brown curves are planar), user prescribes curve edits to create a new constrained mesh using
our framework. The bottom row shows design space sampling results with the input set of
constraints along with the user prescribed curve constraint.

We then construct the reduced Hessian of the new constrained mesh manifold as
described in Section 3.2. A practical way of exploration uses only a pair of eigen-
directions. Such a pair captures a planar slice through the tangent space in which the
user can directly explore only meshes with good aesthetic behavior (see Figure 6).

Figure 13: Starting from an input PQ mesh (top-left), the user edits the constrained mesh
using two curve handles, and then we present multiple variations satisfying the input set of
constraints and the curve specifications using our design space exploration tools.
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input curve constraint deformed model design variations

Figure 14: Starting from an input PQ model, the designer manipulates a curve-handle pro-
ducing a deformed model. The prescribed curve handle, which can be distinctive in this case,
can then be retained during subsequent design exploration thus simplifying the exploratory
design phase. (Input model courtesy of Alexander Schiftner.)

4.3 Sampling the design space

In addition to allowing direct exploration of the design space using eigen-vectors of
the corresponding reduced Hessian matrices, we also sample the parameter space to
provide a preview of the design possibilities. Specifically, given a constrained mesh,
we first deform the mesh using the user-prescribed curve constraints as demon-
strated before. Let such a mesh be denoted by x0. We create a constrained mesh
manifold (along with the corresponding linear constraints due to specified curve
constraints), compute its reduced Hessian to identify a desirable subspace to ex-
plore (we retain only the top 5 directions in our tests). Let the desirable subspace
be T ′M (x0). We start a set of sampled meshes with M = {x0}. Then, we randomly
sample parameters in the extracted desirable subspace to extract meshes xi ∈ T ′M (x0)

and add xi to M , i.e., M ←M ∪ xi only if the current sample is not too close to
an existing sample, i.e., d(xi,x j) > ∆ for all x j ∈M , where ∆ is a user prescribed
density threshold.

We stop when the size |M | exceeds a predefined threshold (5-10 in our tests).
Such meshes can be seen as samples of the design domain and offer a quick preview
of design possibilities via a design-gallery interface (see also [Marks et al. 1997]).
Figures 12, 13, and 14 provide typical examples. Note that the user can select any
of the sampled designs and then directly refine the parameters on the tangent space
T ′M (x0). If needed, the solutions are projected to the constrained mesh using the cor-
responding projection operator, but since the deviations from the constrained mesh
manifold are small, such projections have negligible visual effects (see Figure 15).

In all the examples, curve deformation runs in real-time, curve-handle based
constrained mesh deformation takes about 1-2 seconds, while sampling the
constrained mesh manifold takes about 50 meshes per second. However, pre-
computation of the tangent space and spectral decomposition of the reduced
Hessian takes 2-3 seconds for meshes with 300 faces as measured on a laptop.
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Figure 15: Visualization of the mean curvature (top) and Gaussian curvature (bottom) con-
firms the variety of design sampling results in the constrained manifold.

5 Conclusion

We presented a set of intuitive tools for specifying, designing, and exploring con-
strained meshes and associated design possibilities. Specifically, starting from a
single constrained mesh, the user can directly control the final shape by prescribing
desirable curves on the final shape while we computationally enable navigation of
the desirable regions of the constrained mesh manifold. We also provide smartly
selected 2D mappings and generate multiple design alternatives that satisfy the user
hints. We believe that our proposed tools facilitate intuitive form-finding by al-
lowing the designers to only focus on the design space, formed by the valid and
desirable regions of the constrained mesh manifold. We demonstrated the efficiency
of the tools using various case studies.
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