
Noname manuscript No.
(will be inserted by the editor)

Constraint-aware Interior Layout Exploration for
Precast Concrete-based Buildings

Han Liu · Yong-Liang Yang · Sawsan AlHalawani · Niloy J. Mitra

Received: date / Accepted: date

Abstract Creating desirable layouts of building inte-

riors is a complex task as designers have to manually

adhere to various local and global considerations arising

from competing practical and design considerations. In

this work, we present an interactive design tool to create

desirable floorplans by computationally conforming to

such design constraints. Specifically, we support three

types of constraints: (i) functional constraints such as

number of rooms, connectivity among the rooms, tar-

get room areas, etc.; (ii) design considerations such as

user modifications and preferences; and (iii) fabrication

constraints such as cost and convenience of manufactur-

ing. Based on user specifications, our system automat-

ically generates multiple floor layouts with associated

3D geometry that all satisfy the design specifications

and constraints, thus exposing only the desirable fam-
ily of interior layouts to the user. In this work, we focus

on precast concrete-based constructions, which lead to

interesting discrete and continuous optimization possi-

bilities. We test our framework on a range of complex

real-world specifications and demonstrate the control

and expressiveness of the exposed design space relieving

the users of the task of manually adhering to non-local

functional and fabrication constraints.
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1 Introduction

Good room layouts in building designs have to consider

functional and personal specifications coming from the

user, while also taking into account the final manufac-

turing cost. For most designers, manually accounting

for such heterogeneous requirements remains a chal-

lenge, and encourages conventional layouts that often

ignore manufacturing implications (i.e., cost).

Interior layout design amounts to arranging input

rooms in a given envelope or approximate space area

under scale and connectivity constraints (see Figure 1).

Additional design objectives are geometric and topo-

logical, e.g., denoting room sizes and relations, respec-

tively [1]. There can also be accessibility considerations,

for example, a bathroom is preferably attached to the
main bedroom; the dining room should be next to the

kitchen; etc. Further, as a sanity measure, all the rooms

should be accessible by connected paths from the main

door. In the case of multi-storied buildings, there are

additional constraints, e.g., the position and the dimen-

sions of stairs have to match across the different floors.

Interestingly, a large number of such constraints are ap-

plicable to both virtual scenes and real physical setups.

Automatic generation of interior layouts has been

studied recently based on user specified requirements

such as expected room area and connectivity among the

rooms (c.f., [1,13]). In our setup, the user first indicates

such global functional specifications by prescribing ap-

proximate area of each room and a connectivity graph

indicating the desired inter-room connections. Subse-

quently, the system returns realizations conforming to

the input constraints. Even when such a layout satis-

fies all the predefined conditions, users may still want

to fine tune the design, such as change room areas or

swap pairs of rooms. More importantly, being oblivious
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Fig. 1 Interactive floor plan generation by our system based on constrained optimization and precast concrete based con-
struction cost minimization. Concrete slabs that were cut are highlighted in red. (Please see supplementary video and demo.)

to the final construction, the user designed floor plan

may be ill-suited to the actual manufacturing process,

and thus be expensive. Hence, besides ensuring func-

tional floor plan when the user manipulates any sug-

gested design, we specifically optimize the geometric

realization to produce economic constructions. Thus,

both functional and fabrication constraints are directly

accounted for in our proposed interactive design setup.

In this paper, we focus on a particular construc-

tion methodology, namely on precast concrete based

buildings. The standard practice is to pre-fabricate a

(discrete) number of concrete slabs of certain dimen-

sions (i.e., length, width, and thickness) using reusable

molds, transport the slabs to the construction site, and

directly assemble the slabs to form the buildings. Fur-

ther, to encourage mold reuse, only a small number of

slab sizes are supported. Hence, to build a wall of ar-

bitrary dimension (e.g., length), it is often necessary

to custom cut bigger pieces of slabs, a process that

can be both expensive and time consuming. Figure 2

shows some real precast concrete based designs. Note

that some of the slabs are sliced to fit the wall length, or
have been drilled to make space for widows and doors.

Thus, while it is possible to create custom-made

concrete slabs, they are preferably avoided due to cost

considerations. Hence, our goal is to reduce costs in

precast buildings by decreasing the number of cuts re-

quired. Figure 1 shows an instance of a layout with

double-walled precast concrete slabs using our approach,

wherein the gaps in between the concrete slabs are filled

with insulation material (or left void).

After generating an initial layout, all the wall seg-

ments become candidate elements to support user in-

teractions. In order to support interactivity, the system

approximates rooms as rectangular proxies to optimize

and later regenerate a layout following a set of prede-

fined rules. The regeneration is challenging since the

users cannot easily predict possible consequences after

arbitrary interactions such as irregular rooms leading

to undesired corners, or scattered short wall segments

that result in manufacturing difficulties. In such cases,

the system proposes local changes reflecting the user in-

tents as well as global optimization targeting functional

and fabrication efficacy.

Our algorithm focuses on two key considerations.

First, we generate an initial design based on user inputs,

and then iteratively regenerate the layout based on user

refinements. Such layouts satisfy predefined specifica-

tions and reflect user prescribed changes. Second, we

closely follow real world manufacturing implications to

improve the designed floor plan. Figure 1 shows a typ-

ical work flow and a final layout produced in a design

session. We tested our system on a range of different

examples and demonstrated the strengths and limita-

tions of such a system for computational design (see

also supplementary video and demo).

2 Related Work

Architectural floor plan design has been widely studied

in the context of automatic space planning. Layout de-

sign was initially treated as packing problem and cate-

Fig. 2 Concrete casting in real-world building manufacture.
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gorized as slicing and non-slicing structures [2,18]. Typ-

ical approaches include using tree and graph structures

to search over possible configurations of slicing floor

plans [11,12,16,22]; or employing branch-and-bound to

place a number of blocks inside a given layout enve-

lope [18]. In other contexts, non-slicing floor plans are

evolved from circuit layout problem to minimize chip

areas [6,8,17]. More recently, layout design has been

extended to simplify indoor furniture placement [14].

Most approaches search over possible placements in

a design space. Galle et al. [4] implemented an exhaus-

tive algorithm to select the rectangular arrangements

satisfying constraints among all the possible genera-

tions. However, due to computational restrictions, the

method could only handle layouts with up to ten rooms.

Wong et al. [21] searched feasible solutions by simulated

annealing. Alternately, physically based modeling [1,7]

has been introduced to simulate rooms as mechanical

elements whose motions are manipulated by forces de-

fined between inter-room spacing. Arvin et al. [1] sum-

marize geometric and topological objectives to search

space planning solutions, e.g., alignment, area, and pro-

portion objectives.

Evolutionary algorithms have been applied to search

layout possibilities by treating design variants via cross-

overs and mutations operators [3,15,19]. In these ap-

proaches, evolutionary strategy is used to fit rooms

into target envelopes, while improving appropriately

designed fitness functions. Further, mutations are al-

lowed during such evolution, for example to switch rooms

(crossover) in order to optimize connectivity [9]. Re-

cently, an automated layout generation has been pro-

posed to sample and efficiently explore the layout search

space [13]. The method, however, is not designed to sup-

port interactive design refinements.

In a related attempt, Harada et al. [7] design a sys-

tem that allows users to interactively drag rooms, but

the possible layouts are pre-defined. Specifically, the al-

gorithm searches for a matched state that best reflects

user intents from a set of constructed transformations

for mapping states. Further, only limited sets of con-

straints are considered, and the method does not gen-

eralize to handle manufacturing constraints. More re-

cently, physical and manufacturing considerations have

also been explored in the context of geometric form

finding [20]. Similarly, in this work, we focus on pre-cast

concrete based constructions and consider its implica-

tions in design and layout problems.

We integrate the users in the design process by sup-

porting direct manipulation of the floor plan, followed

by a constrained optimization under room layout and

construction guidelines. The optimization, based on ab-

stracted proxy geometry, proceeds by updating the lay-

outs responding to user interactions including pulling

walls forward or backward, and swapping rooms. More

importantly, the layouts are adjusted to make them

more amenable to subsequent construction considera-

tions. Specifically, we introduce new constraints due

to construction cost, e.g., casting walls with certain

types of precast concretes to minimize cutting of pre-

fabricated concrete slabs.

3 Overview

We introduce an interactive system to create precast

concrete based building layouts satisfying design con-

straints. The algorithm runs in three phases: (i) A lay-

out is initially formed by space division complying with

user specifications. (ii) Users can then interactively ma-

nipulate the suggested layouts by sliding an arbitrary

wall segment forward or backward as well as swap-

ping rooms. Such interactions might cause topological

changes and produce unreasonable layouts, e.g., unbal-

anced room size, irregular room shapes, and many cor-

ners in the building etc. We use a proxy-based opti-

mization, followed by layout regeneration, to explore

the possible layouts and generate the one that best

conforms to the user requirements and design consider-

ations. (iii) We build a model to support pre-cast con-

crete based construction with a given library of con-

crete slabs by automatically adjusting wall positions.

Specifically, after casting refinement, the final layout

still closely approximates the original layout produced

by user interactions and optimization, and can directly

be used for pre-cast concrete constructions involving

minimal cutting. Figure 1 shows an example.

4 Layout Initialization

In this section, we describe the approach used to ini-

tialize the floor plan according to the design require-

ments. Given the dimensions of the rectangular outline

region R, the user first specifies the number of rooms,

approximate room areas, and the connectivity between

the rooms. We encode the information as a connection

graph (see Figure 1(a)), where each room is represented

according to its relative room area, while the graph

edges specify the room connectivity.

Based on the design requirements encoded in the

graph, we generate an initial floor plan layout f0, which

decomposes the outline region into n rectangular rooms.

Each room is represented by its center point ci = (xi, yi),

room length ui, and width vi. Note that room height

is assumed to be given and fixed. Each wall segment is

defined by connecting neighboring room corners. The
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Fig. 3 The effect of individual terms in the cost function for layout optimization. To highlight the precast concrete term, we
also show the layout with different types of concretes.

initial layout f0 serves as the input for the subsequent

optimization and exploration.

We use a binary partitioning strategy to iteratively

divide the outline region and generate the initial floor

plan. We observe that room layouts are heavily influ-

enced by certain dominant rooms (e.g., living room)

that are well connected with the other parts of an apart-
ment. Hence, as a first step, we sort all the rooms ac-

cording to their importance, which is determined by the

number of their adjacent rooms (i.e., their valence in the

connection graph). In case of tie, we use a predefined

ordering, e.g., living room�dining�bedroom, etc.

Two key rooms r̄1 and r̄2 with maximum number of

connections are selected. Then, we create two groups of

rooms based on their connectivity to r̄1 and r̄2. If there

exists a room ri that is connected to both r̄1 and r̄2,

we check the number of joint connected rooms between

ri against r̄1 and r̄2; and assign ri to the group with

the larger number of overlapping connections. Else if

ri is not connected to either r̄1 or r̄2, we assign it to

the one with less importance. After we have two groups

of rooms, we split the given region into two subregions

with the area of each subregion proportional to the sum

of room areas within the respective group. We intro-

duce a horizontal split, if the length of the region is

larger than its width; otherwise we introduce a vertical

split. We recurse this process for each subregion until

each group consists of a single room. Finally, in order

to eliminate wrong connections that may have been in-

troduced during this division process, we swap rooms

with comparable areas if the operation decreases the

number of missing connections.

Further, for buildings with multiple floors, we ensure
the same horizontal location for the staircase. There-

fore, we perform space partition on all the floors with-

out staircases except the first floor, then slice the space

for the staircases on every other floor according to the

assigned location of the staircase on the first floor. Thus,

at the end of this stage, we have a set of sliced rectan-

gles abstracting an initial layout.

5 Layout Optimization

In this section, we describe the system behavior as the

user interactively manipulates the layout. Starting from

an initial floor plan that complies with the design spec-

ifications, the user can further interact with the sug-

gested layout by manipulating rooms (see Figure 4(a)

and supplementary video) accompanied by an optimiza-

tion. Since the dimension and position of an individual

room are organized as variables to be optimized, the

resultant layout might have overlapping rooms or gaps
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among rooms. Therefore, we employ a topology vali-

dation after layout optimization to regenerate a valid

layout.

5.1 User interactions

Unlike most existing approaches that generate a fixed

layout, we allow the user to evaluate and refine the

suggested floor plan, while the system suggests changes

to conform to the predefined constraints. We support

two types of interactions to change room shapes and

locations.

(i) Moving wall segments. The basic elements of a lay-

out are its room shapes and locations. To assist the

users in the layout exploration within the outline re-

gion R, we present the layout as a collection of wall

segments that split the region into different rooms. The

user can drag wall segments along their normals to up-

date the area of incident rooms (see the highlighted

wall in Figure 4(a)). More specifically, suppose an in-

ner wall segment ωi is shared by two rooms r1 and r2
with respective areas a1 and a2, the trajectory of ωi is

a rectangular area measured by αi, then the new room

areas will be a′1 ← a1 ± αi and a′2 ← a2 ∓ αi. This can

result in a unbalanced layout if the walls are moved ar-

bitrarily. Therefore, in a subsequent optimization, we

adjust the room locations and areas according to sev-

eral quality measurements and validate the topology of

the whole layout.

(ii) Swapping rooms. We also provide the user with ad-

ditional design freedom to swap two rooms. Note that

such a manipulation (i.e., swapping of room ids) only

leads to position exchange, while the expected room

areas remain unchanged. Hence, subsequently local ad-

justments are made via optimization to get the rooms

closer to the predefined sizes. To overcome the connec-

tivity violation due to room swaps, we restore connec-

tions using doors or open walls by searching neighboring

room spaces during a post processing step.

5.2 Optimization

Next, the system optimizes the current layout to assist

the users to correct implausible deviations from pre-

defined requirements on floor plan quality and affor-

dance considerations, as well as to facilitate real fabri-

cations. The deviations include: (a) unusual room sizes,

such as relatively small living room or a large laun-

dry; (b) unbalanced dimensions resulting in unusually

narrow room spaces; (c) irregular room outlines with

too many corners; (d) inconsistent staircases locations

across multiple stories of a building; and (e) lack of

manufacturing considerations, e.g., requiring unneces-

sarily large number of cutting of pre-cast concrete slabs.

In the optimization, each room ri is viewed as a rect-

angle that is represented by four variables (xi, yi, ui, vi),

where xi and yi denote the center coordinates, ui and

vi denote the width and length (i.e., the x-range and

y-range, respectively). Currently, we only handle axis-

aligned rooms in our implementation. We formulate the

optimization problem by minimizing a weighted cost

function (over the free variables parameterizing the cur-

rent layout f):

C(f) := λaCa(f) + λrCr(f) + λbCb(f) + λcCc(f). (1)

The individual terms are defined as follows while their

relative weights are specified by the user. The effect of

each term is illustrated in Figure 3. In our experiments,

as a default all the weights (λa, λr, λb, λc) are set to 1.

Room area. As the user specified the expected room

areas, we try to make the room area meet the initial

area requirements after the user interaction. The area

cost is defined as:

Ca(f) =

n∑
i=1

(Ai − ui × vi)2 (2)

where, Ai is the user specified area of room ri.

Aspect ratio. In order to avoid skewed room shapes for

bedroom, living room, etc., we optimize the aspect ratio

of each room by making room width and length similar,

i.e.,

Cr(f) =

n∑
i=1

(
ui − vi

max(ui, vi)

)2

. (3)

Note that the aspect ratio is not applied on the rooms

mainly for spatial connectivity, such as hall, entry, porch

and stair.

Boundary length. We also aim to ensure that the opti-

mized layout makes the most use of the area bounded

by the given rectangular outline. Therefore, we com-

pare the total length of the wall segments lying on a

boundary line against the length of this boundary. It is

measured by:

Cb(f) =

nb∑
i=1

(lb[i] −
nb[i]∑
j=1

lij)
2 (4)

where, nb is the number of line segments of the outline

(nb = 4 in our implementation), lb[i] is the length of

the i-th boundary line, nb[i] and lij are the number and

lengths of the wall segments associated with the i-th

boundary line. Note that lij can be the length or width

of a certain room based on the current layout.
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Precast concretes. Since only concrete slabs with re-

stricted dimensions are preferred, our goal is to find

out the optimal combination of concretes for casting

each wall segment. Namely, the number of required cuts

needs to be minimized to save cost in the real construc-

tion. The height of a concrete usually equals to the

height of the wall of a single floor, thus we only consider

the length of each wall segment. Suppose w1, w2, . . . wm

are the widths of m concrete types and the optimal

number of precast concretes for a wall segment ωi are

ni1, n
i
2, . . . n

i
m (in Section 6, we explain how to estimate

these numbers). We optimize the length of each wall

segment so that it is close to the optimal length (with

no cuts required)

Cc(f) =

nω∑
i=1

(li −
m∑
j=1

wj × nij)2, (5)

where, nω is the number of wall segments, li is the

length of wall segment ωi, which can either be the length

or width of a certain room. Note that the numbers of

the required concretes in the optimization are only ap-

proximately estimated and the minimization for casting

concrete will be discussed in the next section.

Furthermore, the combined energy function C(f) is

optimized subject to a set of constraints defined below.

Neighborhood consistency. For each room ri, we want

to preserve its connectivity with neighboring rooms in

the layout. We identify the neighboring rooms along

four canonical directions (left, right, above, below) and

preserve the distance between ri and the neighboring

room. For example, if rj is the left neighbor, the con-

straint is, xi − xj = ui/2 + uj/2, etc.

Wall length. In order to generate a valid layout within

the envelope, the width/length of each room should be

bounded by the horizontal/vertical boundary line re-

spectively. In addition, to avoid that a wall segment is

too short to place a door or a window, we place a lower

bound on room width/length as max(lb)/10, where lb
denotes the length of a boundary line.

Staircase in multi-story buildings. For buildings with

multiple floors, the staircase of each floor has to be

located at the same position with similar dimensions.

Therefore, after we optimize the active floor fa edited

by the user, we use its staircase as a reference to align

the staircases of the other floors and adjust the rooms

accordingly.

The above optimization is a non-linear least squares

problem subject to linear equality and inequality con-

straints. We use the active set algorithm implemented

by the minbleic package in ALGLIB library to solve for

the optimum configuration.
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Fig. 4 Layout optimization via abstracted rectangular prox-
ies, followed by layout regeneration and validation.

5.3 Layout regeneration

After the optimization, some rooms (abstracted by rect-

angular proxies) can overlap, have gaps in between, or

cause irregularity at the boundary (see Figure 4(b)).

Therefore, we next regenerate a valid layout by resolv-

ing the topology violations.

Irregularity at the boundary. We define a room ri as

boundary room if one of its wall segments ωj lies on

a given boundary line bk. After the optimization, we

translate ri if necessary to make sure ωj is still aligned

with the same boundary line bk (see Figure 4(c)).

Gaps and overlaps. To detect gaps and overlaps among

the rooms, we generate a grid structure of the given

outline region based on the room vertices. Each grid

cell is a rectangle, denoted by gj . Thus, there exists a

gap if the center of gj is not covered by any room. If a

cell is covered by more than one room, we mark it as

an overlap.

A gap is merged by snapping to the closest neigh-

boring room. We define closeness as follows: if a room ri
and a gap gj share a horizontal wall segment, the close-

ness is the difference along y-axis between their two

centers. Similarly, if they share a vertical wall segment,

the closeness is measured by their difference along the

x-axis. To avoid unnecessarily irregular room shapes,
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we merge parts by translating the shared wall segment

of ri so that ri covers gj (see Figure 4(d)). Note that

the gap merging process may generate new overlaps.

An overlapping region is merged to one of the inci-

dent rooms that retains regularity as much as possible.

Suppose room ri is one of the rooms that covers gj , if

merging ri and gj will not increase the number of wall

segments in ri and the resultant area of ri is closer to

its expected area compared to the merging effect on the

other incident rooms, then ri will be selected to merge

gj (see Figure 4(e)). After validation, we update the

room parameters according to the resultant layout (see

Figure 4(f)).

6 Fabrication-aware Reshaping

Precast concretes are widely favored in building con-

structions due to two key advantages: (i) concrete cast-

ing happens in controlled factory environments; and

(ii) the pre-cast concrete blocks are simply transported

and assembled at the construction site, thus vastly sim-

plifying casting logistics and scaffolding requirements.

Also, on-site construction proceeds faster as one does

not have to wait for concrete casts to solidify. The con-

venience, however, comes at the cost of having to tai-

lor pre-cast concrete blocks to fit building dimensions.

Specifically, if the available concrete blocks cannot fit

the wall segments well, the concrete blocks have to be

either redesigned or sliced leading to high manufactur-

ing cost. We observe that slight wall resizing of the

layout without sacrificing layout desirability can avoid
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Fig. 6 Starting from a single layout (left), the user can create
multiple design variations (middle-left, middle-right, right),
while the system ensures that the variations respect the pre-
scribed constraints.

such extra cost (and inconvenience). Hence, we focus on

adjustments that do not cause obvious size variations

in the entire design, or result in topological changes.

The concrete block can be parameterized as h×w×t,
where h, w, t are the height, width, and thickness, re-

spectively. Then, realizing a layout with pre-cast slabs

is similar to solving the packing problem [10] with an

additional requirement that each wall segment should

be fully packed. Since the provided concretes have the

same thickness in practice and the concrete height is

usually determined by the wall height of a single floor,

the problem amounts to solving a 1D problem and can

be formulated as follows: Given a set of possible con-

crete slabs with different widths, how to assemble all

the wall segments with minimal number of cuts by ad-

justing wall positions and minimizing the resultant ad-

justments?

We ignore the thickness of the wall segments in the

layout optimization. In real construction with double

wall, each wall segment is enclosed by two layers of

precast concretes with the intermediate space used for

insulation material. We first update the layout so that

each wall segment is of a certain thickness (see Fig-

ure 7). Thus, each wall segment structure is represented

by a polygon (the height is irrelevant here). The two

longest parallel edges are the two layers which will be

formed by precast concretes. Other edges are cross sec-

tions for conjoining neighboring walls. Let s1 and s2
denote the sizes of the two layers corresponding to a

wall segment ω and h is the uniform height (same as

the height of precast concretes). Our algorithm consid-

ers three scenarios: a single wall, a wall with doors or

windows, and wall traverse. Without loss of generality,

assume we have three types of concretes with the same

height and thickness but different widths, denoted by

w1, w2, and w3.
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(i) Single wall. Take the layer with size s1 as an ex-

ample, the goal is to fill it with given smaller concrete

slabs of widths w1, w2, and w3. In order to calculate the

optimal combination of concretes leading to the mini-

mal change requirement of the layer, we use dynamic

programming to solve a classical Knapsack problem [5].

Having obtained the optimal numbers of precast con-

cretes with different types, we compute the error be-

tween the sum of their widths sw and s1 and minimize

it. Here sw = n1×w1+n2×w2+n3×w3 (n1, n2, n3 ≥ 0).

After that, s1 is updated to sw and s2 is similarly up-

dated.

Although it seems the two layers of a wall segment

can be cast with the same solution, the two layer sizes

are actually different. A wall segment can have one, two,

or three neighboring walls, which can be observed from

the updated layout in Figure 7. We model four types

of wall segments to facilitate concrete casting for the

corresponding layers.

Fig. 7 The floor plan layout is updated to have certain
thickness of each wall segment for casting concretes (left).
Four types of wall segments with different layer configura-
tions (right).

(ii) Wall with doors or windows. The wall segments

with doors or windows need special treatment. For a

given layer, we first cast the area above/below a door or

a window using specialized concretes. Here, we assume

all the doors have the same size, so as the windows.

We solve the rest of the parts separately as presented

before. Note although a global optimization can alter-

nately be used, we preferred this greedy approach for

interactive speed.

(iii) Wall traverse. After the two layers of a single wall

are updated, we propagate the change to the layers of

neighboring wall segments so that the orthogonality

and collinearity between wall segments are preserved.

We also have a flag for each wall segment so that the

size of its layer is only updated once to avoid conflicts.

Finally, during the concrete casting, two neighbor-

ing collinear layers are preferably combined into a longer

one, if applicable, since it helps to save unnecessary cuts

during casting optimization. Figure 5 shows a concrete

casting result for a floor plan layout of a single story.

Note that although the layout does not change signifi-

cantly, the number of cuts is significantly reduced.

For multi-storied buildings, we perform the above

concrete casting algorithm floor by floor since the room

layouts can be different for each floor, and thus can be

solved independently (with only stairway consistency).

7 Results

We evaluated our interactive floor plan designer on a

variety of examples with different design specifications

(varying room numbers, stories, etc.). The users suc-

ceeded in interactively creating floor plan layouts under

different types of constraints (see also supplementary

material). These constraints ensure that the resultant

layouts are both functionally plausible and optimized

according to fabrication considerations.

We first evaluate single-story floor plans. Starting

from the layout specifications encoded in a connected

graph, the user interacts with the initial layout while

the optimization automatically involves design and fab-

rication considerations (see Figure 1). Further, our sys-

tem supports easy creation of multiple design sugges-

tions respecting prescribed constraints. Figure 6 illus-

(a) floor plan #1 - without op-
timization (56 cuts)

(b) floor plan #1 - after op-
timization (20 cuts)

(c) floor plan #2 - without
optimization (72 cuts)

(d) floor plan #2 - after opti-
mization (26 cuts)

Fig. 8 Optimization results in cost savings due to large re-
ductions in the required cuttings of precast slabs.
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Fig. 9 Our system also supports floor plan layout generation
for multi-storied buildings.

trates three interactively generated layouts originated

from the same initial layout.

Figure 8 compares two layouts with and without op-

timization and precast concrete adjustment. Note that

the optimized layouts have more regular room shapes,

while the number of required concrete cuts has been
significantly reduced. Floor plans of multi-story build-

ings can also be created by our system. Figure 9 shows

an example of a two-story building.

Our work can be applied to different kinds of interior

layout, such as office design. Figure 10 shows an office

layout generated using our interactive system, as well as

the corresponding concrete casting layouts. Traditional

apartment buildings have same layouts for residents on

different floors. However, based on our approach, each

floor can be designed in a user-specified style without

additional construction cost in terms of precast con-

cretes (note that the support structure for the floors

are not considered). Figure 11 shows an example of a

three-story building with different interior layouts on

each floor according to different design specifications.

Performance. Our system is implemented in C# on a

Windows 7 machine with Intel X5550 CPU (2.66GHz)

and 4GB memory. The experimental layouts have 10-

15 rooms on a single floor. The constrained optimiza-

Open area

HallOffice
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Conference

O
ffice A

rea#2
Hall

O
ffice A

rea#3

W
om

en’sRoom

TeaRoom

Entry

M
en’sRoom

(a) resultant floor plan

(b) precast concretes

Fig. 10 Office building layout created by our system.

tion for a 14-room layout (Figure 3) takes around 2

seconds, and 3.5 seconds for the two-story layout in

Figure 9. The layout validation and fabrication-aware

reshaping are in real time (see also video). Note that

in the video, to better visualize the layout validation,

we inserted small time intervals (0.8 second) between

individual steps.

User study. We conducted a pilot user study to evalu-

ate our system. The participants are five students from

CS department. All of them have experiences on soft-

ware UI design but no experience on layout design. We

provided them a single floor layout example with two

bedrooms and asked them to design similar layouts. All

the users could successfully create new layouts by start-

ing from the connectivity graph representing the exam-

ple layout. They all felt that the system is easy to use

and appreciated the various layout design possibilities.

In the user study, we also tried to disable the under-

lying optimization and fabrication cost minimization.

The resultant design became undesirable due to irreg-

ular rooms shapes.

8 Conclusion

We presented an interactive system to create interior

room layouts subject to design constraints, user pref-

erences, and manufacturing considerations. Specifically,

we focused on constructions with precast concrete slabs

with the goal to minimize the number of necessary cut-

ting of the concrete slabs. We demonstrated our system
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Fig. 11 A three-storied apartment building layout with con-
sistent stairway placement as generated using our system.

on a range of different examples and evaluated the ef-

fectiveness of the system via a pilot user study.

Our system can be extended in multiple ways. For

example, a data-driven approach similar as in [13] would

be very helpful to generate initial layouts for interac-

tive exploration. Other layout design constraints can

be added such as favorable position and orientation

for certain rooms. Also, more expressive room proxies

other than rectangles would be interesting to consider.

Finally, the current framework cannot reliably handle

large changes prescribed by the users, or when the con-

strained optimization fails to find a valid solution. In

the future, we would like to explore a multi-resolution

approach to address this limitation.
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