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Figure 1: Top left: Reconstruction of a car model based on a felt design by Gregory Epps. Close-ups of the hood and the rear wheelhouse are
shown on the left. The fold lines are highlighted on the car’s development. Top right and bottom: Architectural design. All shown surfaces
can be isometrically unfolded into the plane without cutting along edges and can thus be texture mapped without any seams or distortions.

Abstract

Fascinating and elegant shapes may be folded from a single planar
sheet of material without stretching, tearing or cutting, if one incor-
porates curved folds into the design. We present an optimization-
based computational framework for design and digital reconstruc-
tion of surfaces which can be produced by curved folding. Our
work not only contributes to applications in architecture and indus-
trial design, but it also provides a new way to study the complex
and largely unexplored phenomena arising in curved folding.
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1 Introduction

This paper is an excerpt from [Kilian et al. 2008]. More details on
curved folding can be found in the aforementioned paper.

Developable surfaces appear naturally when spatial objects are
formed from planar sheets of material without stretching or tear-
ing. Paper models such as origami art are prominent examples. The
striking elegance of models folded from paper, such as those by
David Huffman [Wertheim 2004], arises particularly from creases
known as curved folds (see Figure 2). Such folds can be gener-
ated from a single planar sheet. Early investigations of curved
folds are due to Huffman [1976]. More recently, computational
geometers became interested in folding problems and computa-
tional origami [Demaine and O’Rourke 2007]. Their work concen-
trates on piecewise linear structures; according to [Demaine and

Figure 2: Two examples of paper models featuring curved folds
that were created by David Huffman.

O’Rourke 2007], ‘little is known’ in the curved case. While in-
dustrial designers have started to explore the technique of curved
folding (www.robofold.com), current geometric modeling systems
still lack any support for such a design process (in fact, most CAD
systems are lacking a proper treatment of developable surfaces).
As a result, Frank O. Gehry, who favors developable shapes for
many of his architectural designs (cf. [Shelden 2002]), has initiated
the development of a CAD module for developable surfaces by his
technology company. To the best of our knowledge, curved folding
is not present in that module either.



Figure 3: The car model of Figure 1 and its development (top
right). The patch decomposition into torsal ruled surfaces is shown
using the following color scheme: planes are shown in yellow,
cylinders in green, cones in red, and tangent surfaces in blue. Sam-
ple rulings are shown on some patches of the windshield and the
side window. Such a segmentation is essential for NURBS surface
fitting and manufacturing.

Motivated by the potential and interest in the use of curved fold-
ing for various geometric design purposes, we investigate this topic
from the perspective of geometric modeling. Developable surfaces
are well studied in differential geometry [do Carmo 1976]. They
are surfaces which can be unfolded into the plane while preserving
the length of all curves on the surface. Developable surfaces are
composed of planar patches and patches of ruled surfaces with the
special property that all points of a ruling have the same tangent
plane. Such torsal ruled surfaces consist of pieces of cylinders,
cones, and tangent surfaces, i.e., their rulings are either parallel,
pass through a common point, or are tangent to a curve (curve of
regression), respectively. Whereas a torsal ruled surface has only
one continuous family of rulings, general smooth developable sur-
faces are usually a much more complicated combination of patches.
The presence of planar parts is the main source of this huge variety
of possibilities. The level of difficulty is further increased if one
admits creases, i.e., curved folds (see Figure 3).

2 Discrete developable surfaces

Developable surfaces. As our basic representation of devel-
opable surfaces we employ quad-dominant meshes with planar
faces, which is also the representation of choice for discrete dif-
ferential geometry [Sauer 1970; Bobenko and Suris 2005].

A strip of planar quadrilaterals (Figure 4, left) is a discrete model
of a torsal ruled surface. Such a ‘PQ strip’ can be trivially un-
folded into the plane without distortions. The edges where succes-
sive quads join together give us the discrete rulings. In general they
form the edge lines of the regression polyline r0, r1, . . . ; in special
cases the discrete rulings are parallel, or pass through a fixed point.
A refinement process which maintains planarity of quads generates,
in the limit, a torsal ruled surface Σ (Figure 4, right). Its rulings are
the limits of the discrete rulings, which in general are tangent to the
regression curve r(t), and in special cases are parallel (cylinder), or
pass through a fixed point (cone).

The representation of developable surfaces as PQ strips provides
various advantages over triangle meshes: (i) developability is guar-
anteed by planarity of faces and the development is easily obtained,
(ii) subdivision applied to PQ strips provides a simple and compu-
tationally efficient multi-scale approach [Liu et al. 2006], (iii) the
regression curve – which is singular on the surface and thus needs
to be controlled – is present in a discrete form, and (iv) the cur-
vature behavior can be easily estimated as shown in [Kilian et al.
2008].

Curved folds. In the smooth setting, the following fact about
curved folds is well known (see e.g. [Huffman 1976]): At each
point of a fold curve c, the osculating plane of c is a bisecting
plane of the tangent planes on either side of the fold. This fol-
lows immediately from the identical geodesic curvatures of the fold
curve c with respect to the two adjacent developable surfaces S1

and S2. Hence, given the surface on one side of a fold curve, we
can compute (part of) the other as the envelope of planes, obtained
by reflecting the tangent planes about the osculating planes of c.
This is discussed in some detail in [Pottmann and Wallner 2001],
but one finds only that part of S2 whose rulings meet c. Thus, the
approach is not sufficient for most of our tasks where, in addition,
multiple folds may appear, and the locations of such fold curves
only become known in the process of optimization. In contrast to
the smooth setting, in the discrete case there are more degrees of
freedom in choosing the surface S2. This fact necessitates an opti-
mization approach as described next.

3 The basic optimization algorithm

The basic optimization algorithm simultaneously optimizes a dis-
crete developable surface M and its planar development P . To
maintain isometry between corresponding faces of M and P , we
originally let M be a quad-dominant soup of planar polygons M i in
space. These polygons are isometric to the corresponding faces P i

in the planar mesh P , see Figures 5 and 6. During the optimization,
the polygon soup M will become a mesh via a registration proce-
dure which bears some similarity to that used in the PRIMO mesh
deformation tool [Botsch et al. 2006]. However, our optimization
requires more sophistication since we have to simultaneously opti-
mize the development P while satisfying various other constraints.
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Figure 4: A PQ strip (left) is a discrete model of a developable sur-
face Σ (right). The intersections of edges piqi of adjacent planar
quads generate the regression polyline ri. In the limit of a refine-
ment process, this regression polyline becomes the regression curve
r(t). Polylines C, whose edges cici+1 intersect inner bisectors of
consecutive discrete rulings at right angles, are discrete versions
of principal curvature lines, and serve for the definition of discrete
curvatures. The unit normals to planar quads Pi are denoted by ni.



Optimization starts with an initial set of pairs (M i, P i) of isometric

planar polygons (primarily quads in our setting). The faces P i form
a planar mesh P , while in space the corresponding polygons M i

are assumed to roughly represent a developable shape D. They are
not yet precisely aligned along edges. Thus M is not a mesh but
a polygon soup. See [Kilian et al. 2008] on how to compute initial
positions P i for different applications.

The unknowns. We introduce a Cartesian coordinate system in
the plane of P , with origin o and basis vectors e1, e2. Each face P i

of P is congruent to the respective face M i in space. For each such
face, the image of (o; e1, e2) under the isometric transformation

P i
7→ M i is a Cartesian frame (oi, ei

1, e
i
2) in the plane of the

face M i. If (px, py) are the coordinates of a vertex p of P i, then

the corresponding vertex m of M i is m = o
i + pxe

i
1 + pye

i
2.

During the optimization, the frames (oi, ei
1, e

i
2) undergo a spatial

motion, and the coordinates (px, py) can also vary since we allow

the polygons P i to change.

We linearize the spatial motion of any face M i using an instanta-
neous velocity vector field: The velocity of a point x can be repre-
sented as v(x) := c̄

i + c
i
×x, where c̄

i, ci are vectors in 3-space.
Thus a vertex m+ of the displaced quad face is given by:

m+ = m + c̄
i + c

i
× o

i + px(ci
× e

i
1) + py(ci

× e
i
2).

The new vertex position is linear in the unknown parameters
c̄

i, ci
∈ R

3 of the velocity field, and also linear in the unknown
coordinates px, py . We optimize over both the velocity parameters
and the coordinates. The products pxc

i and pyc
i result in non-

linear terms if we insist on simultaneously optimizing them. To
avoid nonlinear optimization, we alternately optimize for displace-
ments c̄

i, ci and for vertex coordinates px, py . Since our objective
function is quadratic in both types of unknowns this amounts to
alternately solving two sparse systems of linear equations.

Applying displacements corresponding to c, c̄ destroys the exact
isometric relation between corresponding faces Pi and Mi. It is
therefore necessary to further modify the vertices of M i. This can
either be done by rigid registration of the face P i to the estimated

vertex locations m
j
+ as proposed by Botsch et al. [2006], or by

using a helical motion as described in [Pottmann et al. 2006] – we
use the former approach.

The objective function. Our objective function is designed to
simultaneously ensure that M becomes a mesh, fits the input data,
and satisfies the aesthetic requirements of the application.

If a vertex p in the planar mesh P is shared by k faces, then p cor-
responds to k different vertices m

1, . . . ,mk of the corresponding
k faces in M . Since these vertices should agree in the final mesh,
we use a vertex agreement term of the form:

Fvert :=
X

(mi
+ − m

j
+)2,

where the sum extends over all
`

k

2

´

combinations per vertex p ∈ P ,
and over all vertices in P .
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Figure 5: Basic setup for the optimization when a reference surface
D is used. Faces with the same color are congruent.
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Figure 6: Top left: Initial polygon soup M . Top right: Develop-
ment P . Bottom left: M after subdivision and optimization. Bottom
right: M after three rounds of subdivision and optimization.

For M to approximate an underlying data surface D, we include a
fitting term Ffit which is quadratic in the vertex coordinates m. Let
mc denote the closest point in D to m, and let nc denote the unit
normal at mc to the underlying surface. We use a linear combina-
tion of the squared distance (m−mc)

2 and the squared distance to
the tangent plane [(m − mc) · nc]

2 as the data fitting term. When
fitting curves, especially near boundaries, we use tangent lines in-
stead of tangent planes.

Finally, we need a fairness term Ffair. For each pair of adjacent
quads M i and M j of the PQ strip, we use the discrete bending en-

ergy wij(n
i
+ − n

j
+)2 of the corresponding developable surface as

described in [Kilian et al. 2008] as the fairness term. The normal of
a quad M i of M is given by n

i = e
i
1 × e

i
2. Under small displace-

ments, this normal linearly varies as n
i
+ = n

i + c
i
× n

i. Given
a polyline (p1, . . .pn) representing a fold line, i.e., a crease or a
segment of a boundary curve, the contribution to Ffair is a sum of
squared second differences

P

(pi−1−2pi+pi+1)
2. Fairness terms

are also applied to the respective polylines in the planar domain P .

The fairness term Ffair alone is not always sufficient to maintain
convex quads, and to prevent flips in the planar mesh P , espe-
cially when the quads become thin after several steps of subdivi-
sion. Hence we add another term Fconv to enforce convexity. We
assume that the orientation of each face of P coincides with the
orientation of the plane induced by the frame (o; e1, e2). A corner
(pi−1,pi,pi+1) of a planar polygon is convex if and only if the
oriented area of the triangle ∆(pi−1,pi,pi+1) is positive. This
term also prevents flipping of faces.

The algorithm. Combining all individual terms, our basic opti-
mization problem reads

minimize F = Fvert + λFfit + µFfair

subject to Fconv ≥ 0.
(1)

We alternately minimize the objective function over new positions
of vertices in P , and displacements of faces in space, i.e., velocity
vectors for the corresponding face planes. Note that the weights wij

(see [Kilian et al. 2008]) of Ffair, which only depend on the planar
mesh P , remain fixed when optimizing for displacements of faces



Figure 7: A gallery of digi-
tal paper models. Models were
computed with scans of real pa-
per models as reference sur-
faces. Reconstructed models ex-
hibit curved and straight folds
and can be isometrically un-
folded into the plane. Several
special cases like cone singular-
ities (top row – middle) and con-
verging curved folds (top row –
right) are shown.

in space and the side condition Fconv is also not needed. Hence,
the spatial sub-problem amounts to solving a sparse linear system,
and subsequent application of the corresponding rigid body motion
per face. Optimizing the development P is more involved since
the weights wij change in a non linear way as the geometry of P
changes. Additionally we have a quadratic term Fconv to maintain
convexity as a side constraint. With the meshes scaled to fit inside
a unit cube, we found λ = 1 and µ = 10−4 to be good values to
start the optimization.

Given an initial mesh P and a polygon soup M that roughly ap-
proximates a developable shape, we alternately optimize for P and
M . The optimization terminates when the vertex agreement term
falls below a given threshold. For the next refinement level, we sub-
divide the current mesh P , and map the new faces to space using
the rigid transformation associated with the faces of P at the cur-
rent level. The refinement process splits each quad of P to form
two new ones. Splitting is performed along the edges that do not
correspond to ruling directions (see Figure 4, right). The process is
repeated until desired accuracy is reached.
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