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Abstract
Urban facades contain large-scale repetitions in the form of windows, doors, etc. Such elements often are in
different configurations (e.g., open or closed) obscuring their regular arrangements to any direct low-level pixel
matching based repetition detection. We propose a variation-factored representation for facade images by progres-
sively favoring larger repeated structures while allowing relabeling using candidate element types. We formulate
the problem as a Markov Random Field (MRF) based optimization, and evaluate the algorithm on a large number
of benchmark facade images. Such a facade encoding is very compact and can be used for rapid generation of
realistic 3D models with variations suitable for online map viewers or mobile navigation aids.

1. Introduction

Advances in acquisition techniques and computer vision al-
gorithms have resulted in rapid growth of large collections of
facade images [SSS06] and 3D scans [BFP∗04]. Such data,
however, come in low-level representations (e.g., pixels or
points) providing little insight into the actual complexity of
the corresponding facades (e.g., in Google StreetView, Mi-
crosoft Bing Maps).

Researchers have focused on extracting high level in-
formation from facade images using a range of pri-
ors like procedural grammar [TSKP10], manual annota-
tions [MZWG07], reinforcement learning [TKS∗11], repe-
tition based scan consolidation [LZS∗11], etc. They, how-
ever, do not characterize the inherent information content of
the input facades. We propose to jointly analyze the basic
facade elements (e.g., windows, doors) and use their cross-
correlation to reveal the dominant modes of geometric vari-
ations. This not only leads to compact storage, but also pro-
vides a variation-factored encoding of the facades allowing
rapid, realistic, and efficient creation of procedural facades
in the space of extracted element variations.

Facade images display rich pixel-level variations depend-
ing on time and location of capture. Such variations are
mainly due to: (i) intrinsic effects like valid part-level ge-
ometric alterations of the physical building like opening
or closing of windows, rising or closing of blinds, etc.,
(ii) extrinsic effects like presence of outlier elements, vary-
ing illumination, etc. As humans, we routinely ignore these
variations when observing facades, motivating a variation-
factored facade representation. The primary goal of this
work is to factor out intrinsic variations in facade images.
For example, when looking at typical urban facades we re-

member the distribution of states of the window elements,
rather than their individual spatial states. Hence, we extract
and encode only the key configurations of the individual el-
ements, while storing the statistics of their spatial distribu-
tions hierarchically. This leads to compact representations
(4−10x in our tests). Further, the encoding naturally allows
easy generation of multiple plausible facade variations start-
ing from a single facade image (see Figure 1).

Performing such a factorization from a single image with-
out further information is ill-posed. However, we observe
that most facades contain large scale repetitions in certain
(hidden) canonical configurations (see [TSKP10] and refer-
ences therein). For example, in Figure 2 although the build-
ing does not exhibit any obvious image-level repetition, we
as humans detect a 9×2 repetition pattern implicitly chang-
ing the windows to a common state, say open or closed. This

Figure 1: Given a facade image (top-left) we use a
novel MRF formulation to create different hierarchy levels
of variation-factored encodings (top-middle/right) – insets
show types of window elements in the respective levels. (Bot-
tom row) The representation can then be used to generate
plausible variations of the input facade.
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Figure 2: Algorithm pipeline: Starting from a single facade image (left), we classify the detected elements into types, identify
an initial repetition grid, and then use a MRF-based formulation to extract a variation-factored hierarchy. The hierarchical
representation is then used to create novel facade variations (right).

is not surprising since repetitions often relate to both aes-
thetic appeal and manufacturing convenience. As buildings
are inhabited, local geometry gets modified non-uniformly,
obscuring the original repetitions and patterns. Our goal is
to simultaneously segment a facade into basic elements, ex-
tract key states of the elements, and bring them to a canonical
configuration to restore the original regularity of the facades.

We introduce a novel Markov Random Field (MRF)
formulation to automatically extract a hierarchy of cost-
optimized representations progressively favoring more reg-
ular configurations, while suppressing variations (see Fig-
ure 1:top-right). We evaluate our algorithm on a large num-
ber of publicly available benchmark facade images with dif-
ferent extent of variations (see supplementary material). We
use the extracted factored representation to enable novel pos-
sibilities: Starting even from a single facade image, we can
(i) obtain a simple statistical model encoding possible vari-
ation states of the facade, and (ii) procedurally create plau-
sible facade variations while breaking boring and unnatural
regular repetition patterns (see Figure 4).

2. Related Work

Image-based modeling. Debevec et al. [DTM96] in their
seminal paper propose an interactive image-based model-
ing method that exploits characteristics of architectural ob-
jects coupling an image-based stereo algorithm with man-
ually specified 3D model constraints. Subsequently, auto-
matic reconstruction of urban facades has been developed
from unorganized photo collections (see [SSS06, XFT∗08]
and references therein) using photogrammetric reconstruc-
tion and image-based modeling techniques. Such systems
produce massive collections of low-level unorganized tex-
tured points, which are not suited for low-memory footprint
navigation or mobile interactions (e.g., Google Streetview).

Procedural modeling. Wonka et al. [WWSR03] use
split grammars and an attribute matching system to syn-
thesize buildings with varying styles. Later, Müller et
al. [MZWG07] explore auto-correlation based analysis of
rectified images combined with shape grammars towards
urban reconstruction. They propose an interesting mix of
user interaction and image analysis for rule-based procedu-
ral modeling. These methods, being interactive, are difficult

to use for large scale modeling. Further, the methods do not
analyze the allowable variations across similar elements, and
hence the outputs often contain noticeable repetition patterns
due to procedural generation.

Consolidated model synthesis. Multiple data sources (e.g.,
photographs, LiDAR scans, aerial images, GIS data) have
been combined to improve the quality of 3D models [FJZ05,
LZS∗11]. Directly working with incomplete LiDAR scans,
Zheng et al. [ZSW∗10] use model scale repetitions to cre-
ate a consolidated point cloud. Although the resultant point
clouds have high resolution, the algorithms rely on multiple
sources, have moderate to high memory foot-prints, and are
not directly suited for creating realistic model variations.

Facade annotations. Our work is inspired by recent efforts
of Teboul et al. [TSKP10] who perform supervised learning
using shape grammar priors to create perceptual interpreta-
tion of building facades using random walks on the learned
models. The method has been extended using recursive bi-
nary split grammar and reinforcement learning [TKS∗11]
to parse facades into element level masks (e.g., windows,
doors) using training data. Neither of these efforts, however,
models intrinsic variations across elements. We make use of
such a classifier to initially parse the facade images and use
our framework to extract the variations.

3. Algorithm

We now describe the proposed algorithm (see Figure 1).

Pre-processing. We first automatically rectify the input us-
ing extracted vanishing lines [WFP10] and then use publicly
available Grapes package [TKS∗11] to obtain a rough mask
indicating possible element positions and sizes. We then
group the elements into classes based on their classification
types and their sizes. For example, all the detected windows
of comparable size (based on respective mask boundary) are
grouped together (see also Section 4).

Part clustering and grouping. We now look at the inten-
sity variations of the extracted elements based on the masks
to identify key element types. For noise robustness, we only
retain the dominant signals using principal component anal-
ysis (PCA). Specifically, we map each of the (colored) el-
ement patches {P1,P2, . . .} of size say m× n to vectors in
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R3mn and extract their PCA modes. We retain only the top d-
principal components to obtain projected patches. Next, we
classify these patches into types by using mean-shift clus-
tering (kernel width set to 0.1 of the size of element) on
the d-coordinates in the PCA space (d = 7 in our tests). For
each such cluster, as its representative, we take the projected
patch closest (in the d-dimensional PCA space) to the cluster
centroid. At the end of the patch grouping step, each part Pi
has an associated type T (Pi) ∈ T , where T denotes the set
of possible types (e.g., see Figure 2). In the future, we plan
to use normalization and high-level edge features to better
handle noise from outliers and illumination variations.

Initial regularity grid detection. Next, we generate a struc-
ture matrix S0 to describe the facade, with each entry indicat-
ing the element type (∈ T ) for patch Pi in the corresponding
image location. First, the center of each patch Pi is com-
puted. The centers are then used to initialize a 2-parameter
repetition grid. If desired, we can directly operate on the rec-
tified image to refine the estimates for the generators of the
repetition grid [PMW∗08]. Each patch Pi is then mapped to
the nearest element in the refined structure matrix S0.

Optimization. Finally, we create the hierarchical encoding
of the input facade. Specifically, for the i-th hierarchy level
we search for a matrix Si with higher repetition structure by
performing relabeling of element types to the previous struc-
ture matrix Si−1. We formulate the relabeling as a Markov
Random Field (MRF) minimization as follows:

min
x∈|T |mn

E(x) := Edata(x
i−1,x)+αEreg(x) (1)

where, xi−1,x denote the corresponding structure matrices
Si−1,S concatenated into vectors. The weight factor α de-
termines the relative contributions between the data and the
regularity terms, as described next.

Data term (Edata): This term penalizes relabeling of distinct
element types. We construct a cost matrix C where C(a,b)
measures the cost of relabeling a part of a-type by a part of
b-type. Given two element types ta and tb, we first rescale
the bigger-sized element representative to the smaller ele-
ment representative, and then take their sum of squared dif-
ferences (SSD) as C(a,b). Note that C is symmetric with
diagonal entries as zeros. In order to favor replacements be-
tween element types with small proximity scores, we use a
non-linear function f to adjust the data term, specifically,
f : x→ x3. We normalize the entries in C by its maximum
element. Finally, the data term is computed as the accumu-
lation cost as: Edata(xi−1,x) := ∑k C(xi−1

k ,xk). In order to
replace a part of a-type with b-type, we use the representa-
tive element for b-type (as computed earlier).

Regularity term (Ereg): This term measures the regularity of
any given structure matrix and is critical for the success of

Ereg(x) := |unique(x)|+ repeat(x)+ ∑
r∈subrect(x)

1/size(r).

The first term represents the number of different types in the
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Figure 3: (Left) Input facade image, (middle) third level
of variation-factored hierarchy with corresponding non-
overlapping regularity sub-rectangles, (right) correspond-
ing structure and cost matrices. In this level, unique(x)=5,
repeat(x) = 1/6+1/5+1+1/3+1/3.

structure matrix x, while the second term measures the ex-
tent of repetitions and is computed as the summation of the
reciprocals of the number of times each type is repeated in x.
The last term is the summation of the reciprocals of the sizes
of all sub-rectangles in the x and gives preference to large
2-parameter repetition patterns (as commonly found on fa-
cades). We use dynamic programming to identify the biggest
such sub-rectangle consisting of similar type elements in x,
and then the next biggest sub-rectangle that does not overlap
with any previous sub-rectangles, and so on (see Figure 3).

In order to solve for hierarchy levels with increasing pref-
erence for regular structures, we minimize energy given in
Equation 1 with increasing values of α using the iterated
conditional modes (ICM) MRF optimization [Bes86] stop-
ping when all the facade elements have same labeling (typi-
cally 5−10 hierarchy levels in our test images).

Statistical variations. We now use the hierarchy of abstrac-
tion levels to generate statistical variations of the input fa-
cade. First, we estimate the probability that a part type ti in
the input image is relabeled as type t j in a given abstraction
level. We then sample from these estimates to generate sta-
tistical variations of the input facade starting from the corre-
sponding abstraction level. Essentially, this amounts to per-
muting elements among those elements of the same type in
any particular hierarchy level (see Figure 4:bottom). In our
experiments, we observed that random flipping of part types
in the original input image leads to unsatisfactory results.

4. Evaluation

We tested our algorithm on a collection of publicly avail-
able facade images (see supplementary materials). Our test
images produced 5− 10 hierarchy levels, taking 1-2 sec-
onds to compute using our unoptimized Matlab implementa-
tion. Typically our proposed encodings required 4−10x less
space to store all the hierarchy levels. Specifically, instead of
the original image, we only store the d-dominant PCA axes
and PCA coordinates for the different element types along
with their distribution for each level. For example, the num-
ber of hierarchy levels and the total compression ratios for
the different examples are as follows: Figure 1: 6x and 5.8x;
Figure 2: 9x and 8.1x; Figure 3: 7x and 10.4x; Figure 4: 8x
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input facade naive replication for enlarged facade

Figure 4: Starting from a single facade sample (top-left), we
use our variation-factored representation to create procedu-
ral facade faces with variations (bottom-row).

and 4.0x; Figure 5: 5x and 10.0x, respectively. We generated
a range of variations using the encoded representations.

Applications. In a small user study (with 5 users in our lab-
oratory), we observed that the users rarely spotted the sta-
tistically created variations from the original facade images
in their first glance. This demonstrates the benefit of having
a variation-factored representation (with marginal memory
overhead) in quickly creating plausible facade variations as
commonly required in games, mobile browsing, online map-
ping applications (see Figures 4 and 5), etc. Note that our en-
coding allows easy generation of novel facades with differ-
ent number of repetitions while retaining observed element-
level variations in the original facade.

Limitations. Our regularity term is designed to measure reg-
ularity in rectilinear structure matrices. Although most fa-
cades indeed have such structures, the algorithm might pro-
duce suboptimal abstraction levels for those facades that do
not conform to a rectilinear structure. In the future we want
to consider alternate regularity terms to capture patterns
in facades of general structure. Further, since our method
makes use of [TKS∗11] to acquire rough masks of the fa-
cade components in the preprocessing stage, poor masks
could lead to unsatisfactory results. Another direction for fu-
ture work is investigating the possibility of using the gener-
ated abstraction levels to enhance the input masks.

5. Conclusion

We presented variation-factored facade images, a novel rep-
resentation that specifically stores distributions of variations
across elements of the input facade. We presented a MRF

Figure 5: Starting from facade images, we compute their
variation-factored representations, which can then be used
for fast and efficient creation of 3D models with variations.

optimization to automatically generate such encodings, and
used them to create novel facade scenes both as images and
also as low-memory footprint 3D street-view models. In the
future, we plan similarly analyze 3D LiDAR scans leading
to high-level variation-factored facade models.
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