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Abstract
We propose a new probabilistic framework for the efficient estimation of similarity between 3D shapes.
Our framework is based on local shape signatures and is designed to allow for quick pruning of dissimilar
shapes, while guaranteeing not to miss any shape with significant similarities to the query model in
shape database retrieval applications. Since directly evaluating 3D similarity for large collections of
signatures on shapes is expensive and impractical, we propose a suitable but compact approximation
based on probabilistic fingerprints which are computed from the shape signatures using Rabin’s hashing
scheme and a small set of random permutations. We provide a probabilistic analysis that shows that
while the preprocessing time depends on the complexity of the model, the fingerprint size and hence the
query time depends only on the desired confidence in our estimated similarity. Our method is robust to
noise, invariant to rigid transforms, handles articulated deformations, and effectively detects partial
matches. In addition, it provides important hints about correspondences across shapes which can then
significantly benefit other algorithms that explicitly align the models. We demonstrate the utility of our
method on a wide variety of geometry processing applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling.

1. Introduction

There has been great progress in recent years in
the areas of shape acquisition and modeling, result-
ing in large collections of digital geometric mod-
els. Classification, navigation, and usability of such
shape databases largely hinge on the following oper-
ation: Given two shapes in arbitrary poses, how can
we meaningfully define their similarity and evaluate
it efficiently? For database applications, off-line pre-
processing of each shape is typically acceptable, if it
results in fast query handling. In the same context, it
is important to determine, quickly and reliably, when
two shapes are dissimilar.

At a fine level, global shape similarity is tradition-
ally estimated by comparing optimally aligned mod-
els: Translation is factored out by aligning the respec-
tive centroids, while rotation is handled using princi-
pal component analysis (PCA) for the final alignment.
Alternatively, at a coarser level and so as to avoid the
alignment step, global shape descriptors can be com-
puted that are invariant under rigid transformations.

Shape similarity is then estimated indirectly by com-
paring these descriptors.

Global approaches fail for partial similarity, which is
much more challenging, as factoring out arbitrary rigid
transforms without any knowledge of regions of over-
lap between shapes is difficult. In such cases, we can
use more specialized techniques like geometric hash-
ing [GCO06], or explicitly determine correspondence
between models and use it for alignment [GMGP05].
However, these methods require high storage or pro-
cessing time, even if the two shapes are very different.

In this paper we propose an efficient method to de-
fine probabilistic fingerprints for 3D shapes and use
it to estimate partial similarity. Our approach is com-
plementary to existing work on shape descriptors and
signatures, as we can make use of available shape de-
scriptors to define partial similarity across multiple
shapes in arbitrary poses. We compress these descrip-
tors using a probabilistic hashing scheme motivated
by ideas from the database community. Our finger-
prints are such that if they largely disagree, then we

c© The Eurographics Association 2006.



Mitra, Guibas, Pauly and Giesen / Probabilistic Fingerprints for Shapes

input model samples signatures

95012308913762615473879191769218405

89368135790099352913819876042722746

fixed length descriptors

1252
15

375
836

9

probabilistic fingerprint

uniform
sampling

overlapping
patch extraction

spin-image
computation

Rabin’s
hashing

min-hash
using random 
permutations

shingles

Figure 1: Fingerprint generation. We first cover an object with ρ-radius balls spaced δ apart with ρ  δ. The
intersection of each ball with the surface defines a shingle. For each shingle, we compute a descriptor, spin-image
in this case, which is hashed using Rabin’s scheme. Then, in the min-hashing phase, according to m random
permutations, we select a small subset of descriptors and store them as the probabilistic fingerprint.

can claim with high certainty that the corresponding
shapes are dissimilar. This yields an efficient way to
quickly filter large shape collections when searching
for objects matching a particular model.

In our approach to partial shape similarity, we first
cover a given 3D shape with a large collection of over-
lapping patches. Each patch is mapped to a point in a
high dimensional space using a compact, local descrip-
tor that is invariant to rigid transformations. We do
not preserve any information about the relative spa-
tial ordering of the patches. The shape is thus mapped
to an unordered point set in a high dimensional sig-
nature space. We select descriptors that are robust to
perturbations, so that patches which are very simi-
lar are likely to be mapped to the same locale of this
signature space. This is important, as similar regions
may not be covered by patches in exactly the same way
across two shapes. Clearly, if two shapes are similar,
then the corresponding point sets will have proximal
regions in proportion to the partial similarity between
the original objects. However, since we lose relative
patch ordering, it is possible that two largely different
shapes have a significant overlap in signature space.
Statistically this is a rare event and leads to only a
few false positives. It is made even more unlikely by
ensuring large overlap between neighboring patches.
Motivated by this intuition, we define similarity be-
tween two shapes in terms of the similarity between
the signature sets. Our definition is invariant to rigid
transforms, handles partial matching, and is robust to
local deformations and articulated motion.

However, these large high-dimensional point sets
have high storage requirements and are difficult
to compare efficiently. We therefore compress sig-
nature information using a technique called min-
hashing [Bro97] to generate a short probabilistic fin-
gerprint for each signature set. Subsequently, finger-
prints of multiple shapes are compared to estimate
similarity between the signature sets, and hence be-
tween the original objects. We first map the signatures
to a finite universe of numbers using Rabin’s hashing
scheme [Rab81]. Then, during min-hashing, we use a

random permutation to assign a complete ordering to
all elements of this finite universe of numbers. We can
think of this ordering as the ranking of an ‘expert’,
asked to evaluate the patches according to her crite-
ria. According to the expert ranking, we then select
the winner among the set of hashed signatures corre-
sponding to an object. For each object, we collect the
winners of m randomly chosen permutations and save
them as the probabilistic fingerprint of the shape. The
same random permutations are used for all shapes.
This ensures that patches from different shapes are
consistently ordered, according to each of the m cho-
sen ‘experts’.

We can efficiently detect if two shapes are similar
using our shape fingerprints. However, as mentioned
before, we can get a few false positive matches. In
practice, the number of such false hits is very small
and can be handled by match verification using more
expensive partial similarity methods. Further, we can
show that if two fingerprints are different, then with
high probability the shapes are also different. Thus
both false positives and false negatives are bounded.

We provide a probabilistic analysis of our scheme to
show the attractive property that the cost of our al-
gorithm depends on the confidence we want from our
estimates, and not on the complexity of the shapes
themselves. The storage required for preprocessing
and query stages depends on the length of the fin-
gerprint m. Finally, though our algorithm only as-
signs similarity scores between multiple objects with-
out explicitly determining an alignment, it gives im-
portant hints about the regions of overlap and cor-
respondences. We apply our fingerprints to address a
variety of geometry processing applications, including
shape retrieval, automatic scan alignment, adaptive
feature point selection, and mesh authentication.

Contributions

We propose a new statistical approach to efficiently
estimate partial or total shape similarity. We intro-
duce the concept of probabilistic fingerprints for 3D
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Figure 2: Query Processing. A query object is first
processed to generate its fingerprint using the same
parameters used to pre-process the database shapes.
Objects with fingerprints similar to fingerprint of the
query are returned as possible candidates.

shapes, provide a statistical analysis on its effective-
ness for partial matching, and show its practical use
on a number of different applications. The key in-
sight is that the similarity of two shapes can be es-
timated by comparing signatures derived from very
sparse sets of local patches generated on each model.
Based on probabilistic arguments, we show how to pre-
select such patches, without first needing to establish
explicit correspondence relations between the models.
This approach produces a fixed-length fingerprint and
avoids costly explicit alignment of the models. Our
similarity measure is invariant to rigid transforms, ro-
bust to perturbations, handles articulations, and most
importantly, detects partial matches.

2. Related Work

The problem of shape similarity and retrieval has
been extensively studied in computer vision and
graphics. It has been addressed in great detail by
the extensive work done by the Princeton Shape
Retrieval and Analysis Group [FKS∗04, FKMS05].
Meaningful similarity between two 3D shapes, par-
tial or whole, has to be invariant to rigid transforms.
Global shape descriptors, invariant to rigid trans-
formations, include spherical harmonics [KFR03],
shape distributions [OFCD02], reflective symmetry
descriptors [KCD∗04], and Laplace-Beltrami Spec-
tra [RWP05]. Similarity estimation between two mod-
els is then reduced to a comparison of the correspond-
ing global shape descriptors. Alternatively, an object
can be canonically oriented using principal compo-
nent analysis (PCA) and descriptors computed on
the rotation normalized shape – examples include
extended Gaussian images [Hor84] and shape his-
tograms [AKKS99].

However, all of these global methods are less suit-
able for detecting partial matches. This problem can
be addressed by establishing an explicit correspon-
dence across feature points of the models to com-

pute a good alignment [GMGP05]. Such a solution in-
volves exhaustively considering the various correspon-
dence assignments and is thus computationally expen-
sive. Gal and Cohen-Or [GCO06] proposed a different
method for determining partial similarity using geo-
metric hashing techniques. Briefly, in a pre-processing
stage, geometric hashing encodes all the possible can-
didate transforms in a large hash table. While this
approach is more efficient, it trades computation time
for memory, leading to space requirements of multiple
gigabytes even for moderately complex models.

In a different setting, the problem of identifying text
or web documents with partial similarity has been ex-
tensively studied. Effective solutions to this problem
involve clever combinations of hashing and random
sampling techniques [Blo70, SGM98, Bro00]. In these
schemes, a text document is first converted to a set
of overlapping text segments. Similarity between two
documents is assigned based on the size of the intersec-
tion of the segment-sets which is efficiently estimated
using random sampling techniques. Some of these con-
cepts motivated our approach. Our problem, however,
is significantly more challenging, as digital 3D shapes
have neither the linear ordering nor the canonical de-
composition into discrete tokens that is exploited in
the text document case.

3. Shape Fingerprinting

Our goal is to reliably and efficiently estimate (partial)
similarity between two shapes. The similarity measure
should be invariant to rigid transforms and robust to
small perturbations. Here we define such a similar-
ity measure for a restricted class of shapes, namely
surfaces in R3 whose normal is defined almost every-
where, e.g., a smooth surface (implicit or explicitly pa-
rameterized) or a triangle mesh. The measure is based
on surface signatures that allow for effective compres-
sion using hashing. We call a hashed signature a fin-
gerprint and start by listing the properties we expect
in general from a shape fingerprint.

Fingerprint properties. A probabilistic fingerprint
is a function f that assigns to each admissible shape a
fixed size bit string, i.e. a string in {0, 1}m. The main
purpose of fingerprints is to allow for efficient compar-
ison of shapes. Given a definition of shape similarity
(or dissimilarity), any meaningful fingerprint function
should have the following properties.

1. Given two shapes S1 and S2, we want the following
relations to hold with high probability:

a. If f(S1) 6= f(S2), then S1 and S2 are dissimilar.
b. If f(S1) = f(S2), then S1 and S2 are similar.

2. The number of bits m is small compared to the
number of bits needed to encode the actual shapes.
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Figure 3: Shingle generation. (a) Bρ(pi) is the neigh-
borhood ball for a point pi. (b) The selected surface
patch (shingle) Ti around pi. (c) The patch along with
the surface normal at pi. (d) The normal oriented
along the z-axis. (e) Computed spin image for patch
Ti. The signature is invariant to rigid transforms, and
robust to sampling and small surface perturbations.

3. The function f is efficiently computable. Also
f(S1) = f(S2) can be quickly checked.

In the following we describe in detail a fin-
gerprint and the corresponding notion of similar-
ity/dissimilarity it is based on. The pipeline for com-
puting the fingerprint is depicted in Figure 1.

Our fingerprint relies on the concepts of sample,
shingle, signature, resemblance, and hashing. Next we
describe these concepts and how we use them for defin-
ing and computing a probabilistic fingerprint.

Sample. In the first step, we generate a set of (ap-
proximately) uniformly sampled points on the input
shape S. Let P = {p1, . . . , pn} be the set of sample
points with sampling spacing δ. For our fingerprint
to work well we assume that for any p ∈ S, ∃ pi ∈ P
such that ‖pi − p‖ ≤ δ. Further, the number of such
neighboring points is bounded by a small constant,
preventing the sampling from being arbitrarily dense.

pi
~

<δ

S2

pi

ρ

S1

δ

Figure 4: Overlapping Shingles. Shingles for two
shapes S1 and S2 are computed using ρ-radius balls
spaced roughly δ apart. If p̃i lies in a matching region
between S1 and S2, then with high probability the shin-
gle at p̃i will have a corresponding shingle from S1 with
a significant overlap as ρ � δ.

There is a simple and efficient process for generating
such a sample set: Let A be the surface area of the
shape. On the surface of the object, we randomly
place n = dA/πδ2e samples and uniformly spread
them out using particle repulsion [Tur92].

Shingles. For each sample point pi ∈ P , we define
a neighborhood of radius ρ where ρ � δ. A surface
patch Ti ⊂ S corresponding to point pi is obtained
as Ti = S ∩ Bρ(pi) where Bρ(pi) denotes the ball of
radius ρ around pi (Figure 3). If multiple components
are present in Ti, we retain only the component con-
taining pi (the surface is assumed to be a manifold).
We refer to these patches as shingles and denote the
multi-set of all shingles by P. Keep in mind that
P depends on the sample P . Given two shapes S1

and S2, with high probability, any shingle from the
matching region has a corresponding shingle on the
other shape with significant overlap (Figure 4).

Signatures. We compute a signature σi for each
shingle Ti ∈ P and denote the multi-set of all signa-
tures by S. A signature σi is essentially a string that
represents a shingle Ti. Any signature that is invariant
to rigid transforms and robust to sampling and local
perturbations can be used to this end. Here we use
spin images [Joh97] which are defined as follows: Let
the surface normal at any sample point pi ∈ P be ni.
For any point x in the corresponding shingle Ti, its
spin-map is defined as:

(α, β) =
�p

‖ȳ‖2 − 〈ni, ȳ〉2, 〈ni, ȳ/‖ȳ‖〉
�

where ȳ = x − pi. The spin-image si of Ti is simply
the quantized version of the (α, β) space recording
the spin-map of the points of Ti falling into a set of
discrete bins (Figure 3). Since spin images are robust
to perturbations, if two shingles have significant over-
lap then they are likely to have the same signatures.

Resemblance. Now we introduce our similar-
ity/dissimilarity measure. Given two surfaces S1 and
S2 we define their resemblance r with respect to their
corresponding signatures S1 and S2. Remember that
S1 and S2 are multi-sets. For each σ ∈ Si let mi(σ)
denote its multiplicity in Si. The resemblance of S1

and S2 is defined as:

r(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

,

where |S1 ∩ S2| denotes
X

σ∈S1∩S2

min(m1(σ), m2(σ))
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and |S1 ∪ S2| denotes
X

σ∈S1∪S2

max(m1(σ), m2(σ)).

Since resemblance 0 ≤ r(S1, S2) ≤ 1 is higher when
two shapes are similar, we define distance between
shapes as 1 − r(S1, S2). Observe that this definition
is based on the signature sets, and hence depends on
the scale parameter ρ used to define the shingles.

Finally, we want to estimate the resemblance us-
ing a much sparser representation for the shapes than
their signatures, namely their fingerprints. To this end
each signature is first hashed into a finite set U using
Rabin’s hashing scheme.

Hashing. Rabin’s hashing scheme [Rab81] gives a
low collision probability for a fixed bit budget by work-
ing with irreducible degree k polynomials over Z2. Let
the number of bits required to represent a signature
be t. For instance, if a spin image is computed using
b bins and each bin is of length l bits, then t is upper
bounded by the maximum length of the spin images
which is log(b2l). If Rabin’s hashing scheme h maps
each of the n signatures σi corresponding to a shingle
Ti down to k bits, then the probability of collision is
bounded by

Pr[h(σi) = h(σj)|σi 6= σj ] ≤ n2t/2k. (1)

For example, if n = 108 and t = 128 then for k = 80
the probability of collision is less than 10−6. Thus
even with 10 bytes for each signature, we get low colli-
sion probability. Further, Rabin’s hashing scheme can
be very efficiently computed using simple bit arith-
metic [Bro93, CL01]. For each signature we store only
k bits corresponding to the coefficients of the degree
k polynomial in Z2. We denote the universe of all k-
bit numbers by U and we denote the multi-set of all
hashed signatures as I.

We can define the analog of our resemblance func-
tion r for multi-sets of hash values as

r′(S1, S2) =
|I1 ∩ I2|
|I1 ∪ I2|

,

where Ii is the multi-set of hash values correspond-
ing to surface Si. Evaluating this function instead of
r(S1, S2) remains impractical, as the involved multi-
sets are still too large even though we need less bits to
store their elements than we need to store the origi-
nal signatures. Moreover, set operations between these
large unordered multi-sets require O(ni log ni) time
where ni is the number of set elements. As a solu-
tion, we further compress each of the multi-sets I of
hash values to generate a small fingerprint. This is
done by min-hashing using random permutations on
the universe U .

Probabilistic Fingerprint. Let π1, . . . , πm be m
random permutations on U , the universe of k-bit num-
bers. Intuitively, each permutation is like an ‘expert’
assigning an ordering to U according to her criteria.
Given a multi-set I of hash values we use the random
permutations πi to compress the set as follows: We
replace the multi set I by the length m sequence of
strings obtained as

f(S) = (min{π1(I)}, . . . , min{πm(I)}) ,

where the corresponding multiplicities are propagated
in the obvious way. This sequence is our definition of
a fingerprint for a surface S. To generate the permu-
tations πi, we apply 2-universal hashing [MR00] as an
approximation for random permutations, using a ran-
dom pair of numbers as parameters.

Based on the fingerprints we estimate the resem-
blance r(S1, S2) by

r̂(S1, S2) =

Pm
j=1 min(m1j , m2j)χ(f(S1)j = f(S2)j)Pm

j=1 Dj
,

with

Dj = max(m1j , m2j)χ(f(S1)j = f(S2)j)+

m1jχ(f(S1)j < f(S2)j) + m2jχ(f(S1)j > f(S2)j)

where χ(·) is the indicator function taking value 1 if
the condition of its argument evaluates to true, and 0
otherwise. For the surface Si, the j-th component of
its fingerprint is f(Si)j with multiplicity mij . When
the fingerprint consists of strings with all multiplic-
ities equal to one, the resemblance estimate reduces
to r̂(S1, S2) =

P
j χ(f(S1)j = f(S2)j)/m. Notice that

to compare two fingerprints, we simply need to com-
pare them element-wise without any need to solve for
correspondences.

In the next section we show that choosing a large
enough m gives, with high probability, a good esti-
mate of resemblance. In practice m ≈ 1000 is sufficient
and hence the probabilistic fingerprints, in the order
of 10KBytes, are very compact.

4. Analysis

In this section we analyze the performance of our
fingerprints — as mentioned before our goal is to ap-
proximate the resemblance of two surfaces effectively
and efficiently.

Rabin’s hashing scheme maps any signature σ to
a number with bit length k. This mapping obviously
results in some collisions that can be quantified as:

σi = σj ⇒ h(σi) = h(σi)

σi 6= σj ⇒ Pr[h(σi) = h(σj)] ≤ p, (2)
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where p is n2t/2k, see Equation 1. Let S1 and S2 be
multi-sets of signatures for the surfaces S1 and S2,
respectively. Let

A = S1 ∩ S2, B = S1 \ S2, and C = S2 \ S1,

where the set operations again are defined in the
multi-set setting, i.e. the \ operation respects the mul-
tiplicities. We can relate a = |A| (size of a multi-set is
the sum of the multiplicities of its elements), b = |B|,
and c = |C| to the resemblance of S1 and S2 as follows:

r(S1, S2) = a/(a + b + c). (3)

Let I1 and I2 denote the multi-sets of hashed sig-
natures for S1 and S2, respectively. Having set the
terminology we now quantify the errors incurred by
Rabin’s hashing scheme.

Using Equation 2 and the definitions of a, b, and c
in expectation we get:

a ≤ |I1 ∩ I2| ≤ a + d
a + b + c− d ≤ |I1 ∪ I2| ≤ a + b + c,

where d = (2bc+ac+ab)p is obtained by a simple union
bound argument: For any element in B the probability
to participate in a collision that affects the set opera-
tions is upper bounded by (a + c)p. Thus by linearity
of expectation the expected number of such collisions
contributed by B is upper bounded by (a + c)bp. Sim-
ilarly, the expected number of collisions contributed
by C is upper bounded by (a+ b)cp. Adding these two
bounds gives the bound d.

For the approximation quality of the resemblance by
r′(S1, S2) = |I1 ∩ I2|/|I1 ∪ I2| we get in expectation
the following bounds:

r(S1, S2) =
a

a + b + c
≤ r′(S1, S2) ≤

a + d

a + b + c− d
.

Crucial is only the upper bound which we can also
write as

a + d

a + b + c− d
=

r(S1, S2) + ε

1− ε
,

if we set ε = d/(a + b + c). By increasing k, i.e. the
number of bits each signature gets mapped to, we can
make ε arbitrarily small. For small enough ε and as-
suming r(S1, S2) > 0 we get in expectation

r′(S1, S2) ≤ r(S1, S2) + ε

1− ε
≤ (r(S1, S2) + ε)(1 + ε)

≤ r(S1, S2)(1 +
√

ε).

Using Markov’s inequality this yields

Pr[r′(S1, S2) ≥ λ(1 +
√

ε)r(S1, S2)] (4)

≤ Pr[r′(S1, S2) ≥ λE[r′(S1, S2)]]

≤ 1/λ.

model # uniform spin Rabin min

vts. samp. image hash hash

skull 54k 0.8 7.5 0.05 4.5

Caesar 65k 1.4 7.3 0.08 10.3

bunny 121k 1.8 13.8 0.04 2.9

horse 8k 0.7 5.7 0.05 7.3

Table 1: Performance. Timing in seconds for the
different stages of the fingerprint computation (m =
1000) on a 3 GHz Pentium 4 with 2GB RAM. Caesar
and bunny refer to the complete models. Average query
time is roughly 15msec.

Finally, we have to check how our estimate behaves
under the random permutations that we used to com-
pute the fingerprints. When all the strings have mul-
tiplicities one, we use the following fact, see [Bro97],

Pr[f(S1)j = f(S2)j ] = r′(S1, S2),

for all j = 1, . . . , m. Hence estimating r′(S1, S2) by
using m random permutations is equivalent to per-
forming m coin tosses to evaluate the bias of the coin.
Using strong Chernoff bounds we can bound the esti-
mated resemblance r̂(S1, S2) as

Pr[(1− δ)r′(S1, S2) ≤ r̂(S1, S2) ≤ (1 + δ)r′(S1, S2)]
≥ 1− η,

(5)
if m ≥ 4 ln(2/η)/(δ2r′(S1, S2)).

Combining our probabilistic bounds by taking a
union bound for the event we dealt with in Equa-
tion 5 and the complement of the event we dealt with
in Equation 4 we conclude that

(1−δ)r(S1, S2) ≤ r̂(S1, S2) ≤ λ(1+δ)(1+
√

ε)r(S1, S2)

with probability at least 1 − (η + 1/λ). That is, with
high probability r̂(S1, S2) is very close to r(S1, S2).
The analysis can be easily extended for multi-sets giv-
ing us a similar result. Observe that the size m of the
fingerprint depends on the desired confidence in our
estimated resemblance.

5. Results and Applications

We have implemented the framework shown in Fig-
ure 1. Along with each fingerprint, we store some addi-
tional header information: a seed for the random num-
ber generator, sample spacing δ, shingle radius ρ, pa-
rameters for computing spin-images, and k, the degree
of the polynomial used in Rabin’s hashing scheme. The
choice of these parameters is not critical for the suc-
cess of our scheme provided the conditions given in
Section 4 are satisfied. However, we can only compare
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Figure 5: Resemblance between Partial Scans. In
black, resemblance (in %) computed using fingerprints.
In yellow, approximate ground truth computed from
spin-images. Our resemblance definition being sym-
metric, difference between diagonally opposite ele-
ments quantifies the corresponding estimation error.

fingerprints computed using consistent sets of param-
eters. Typical time requirements for the various stages
are shown in Table 1.

Partial Matching. Our scheme is tailored to detect
partial matches efficiently. In an experiment we take a
bust of Caesar along with its three partial scans (Fig-
ure 5). The triangulations of the models are very dif-
ferent and thus test the robustness of our scheme. For
each model, we independently compute their proba-
bilistic fingerprint. Then, for each model pair, we com-
pute its resemblance using the corresponding finger-
prints (shown in black). For comparison, we compute
the ground truth resemblance (shown in yellow) via
spin image signatures. Since our resemblance measure
is symmetric, the difference between diagonally oppo-
site elements in the resemblance matrix quantifies our
estimation error.

Articulated Motion. Resemblance, as measured by
our scheme, is robust to articulated deformations. If
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Figure 6: Resemblance between Articulated Shapes.
The yellow ball shows a neighborhood with ρ = 10 used
for defining shingles. At low values of ρ, we get a high
resemblance, since the effect of articulation is felt only
by few of the shingles. As ρ increases, resemblance goes
down. In yellow, we show the ground truth.
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Figure 7: Automatic Scan Alignment. Given ten ini-
tial scans of the Stanford bunny in arbitrary poses,
for each scan we compute its probabilistic fingerprint
with m = 1000. Scan pairs with highest resemblance
are picked, and then using [GMGP05] their alignment
verified. If the scan-pair align, the fingerprint for the
merged scan is estimated. The process continues until
no more scans can be combined. The number of re-
quired global alignment steps is shown in parenthesis.

large chunks of a model are rigidly deformed across
two poses, then the corresponding shingles and their
hashed descriptors are also preserved. Results on two
articulated poses of a horse model are shown in Fig-
ure 6. The size of the shingle, determined by ρ, af-
fects the resemblance score: smaller ρ gives higher re-
semblance and vice versa. The ground truth (yellow
curve), determined using the spin-image signatures, is
within ±5% of our estimated values.

Automatic Scan Alignment. The problem of au-
tomatic scan alignment has been previously addressed
by Huber and Hebert in [HH03]. Their system can be
made significantly faster using our scheme. We explain
our method with reference to scans (in arbitrary initial
orientations) of the Stanford bunny (Figure 7). In the
pre-processing stage, for each of the ten scans, we inde-
pendently compute its fingerprint. Now for each pair
of models, we estimate their resemblance using the
respective fingerprints and store the edge joining that
pair in a heap with the largest element on top. We then
extract the top edge, try to explicitly align the corre-
sponding patches using a global aligner [GMGP05],
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(a) (d)(b) (c)

Figure 8: Adaptive Feature Point Selection. (a) Two shapes in arbitrary poses. (b) For each scan, black and
yellow balls denote shingle centers chosen by min-hash. In yellow, shingle centers whose min-hashes agree across
the two models. (c) Hints about possible overlap regions obtained by mapping matching min-hashes back onto the
objects. These are used for adaptive feature point selection. (d) Final alignment using chosen feature points. The
set of features with correct correspondence is shown in yellow.

and if the alignment is not valid we just pick the next
largest edge. If an alignment is valid, we merge the re-
spective patches, and need to compute the fingerprint
for the merged patch. However, given two patch fin-
gerprints (a1, . . . , am) and (b1, . . . , bm), we can very
efficiently estimate the fingerprint for the merged
scan simply as (min(a1, b1), . . . ,min(am, bm)) without
explicitly computing the fingerprint for the merged
scans. Using this estimated fingerprint, the heap can
be efficiently updated by re-evaluating only the af-
fected edges. In the figure, the number of required
global registration or verification steps are shown in
parenthesis. Since global registration is much more
costly compared to fingerprint matching, our method,
by quickly pruning away non-matching scans, greatly
speeds up the whole process.

Adaptive Feature Selection. As shown previously,
we can even identify shapes that match only par-
tially. However, with a bit more effort we also get
very good hints about regions of overlap. While com-
paring two fingerprints, we identify the min-hashes
that agree and map them back to the original sur-
face shingles. The union of these shingles give us a
very good estimate of the region of overlap (Figure 8).

Scan A Scan B Final Alignment

Figure 9: Complementary Shapes. Given two com-
plementary scans in arbitrary poses, we find their
alignment using our adaptive feature selection. To de-
tect complementary shapes, flipped normals are used
for computing fingerprint of scan B.

Subsequent global registration algorithms benefit sig-
nificantly from this stage, since the adaptive feature
points, given by matching shingle patches, very likely
lie in areas of overlap and have correct correspon-
dences. In cases when fingerprints are computed inde-
pendently, we can similarly identify potential overlap
regions across multiple shapes, if we additionally store
shingle locations for the min-hashed patches along
with the fingerprints. Timing complexity and storage
requirements still remain O(m).

In order to identify partial complementary matches
between two shapes Si and Sj , we can use a similar
method. The fingerprint for Si is computed as usual.
For Sj , when computing spin-images, we flip the point
normals to take care of complementary shapes. More
generally, for each shape we can compute its finger-
prints and its complement fingerprint. A possible ap-
plication is automatic alignment of broken fragments
as shown in Figure 9. In this special scenario, using
prior information, the flat surface of the scans can
be automatically removed as proposed by Huang et
al. [HFG∗06] as these regions are known not to be in
overlap areas.

Database Classification and Retrieval. We use
resemblance between pairs of shapes to efficiently clas-
sify a shape database and retrieve models from it
(Figure 2). Our database comprises of models, in ar-
bitrary initial positions, from the Princeton shape
benchmark [FKMS05]. For each shape, we first com-
pute its fingerprint. A shape distance matrix is then
build using 1 − r(Si, Sj) as the distance between
any pair of shapes Si and Sj . We extract a 2D em-
bedding of the fingerprint shape space using multi-
dimensional scaling [CC94] on the computed distance
matrix. Figure 10 shows a selection of models in the
embedded shape space. We get meaningful clustering
of shapes even in the presence of articulations and
partial matches. A typical query result from the pro-
cessed database is shown in Figure 11. The resem-
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Figure 10: Database Classification. Shape classification result according to our probabilistic fingerprints. Given
any two shapes Si and Sj, distance between them is defined as 1 − r(Si, Sj). Using this notion of distance, we
compute the full distance matrix for a database of shapes. The 2D projection of the fingerprint shape space is
computed using classical multi-dimensional scaling (MDS).

blance scores for this query with any of the tables,
planted pots, furniture, or car models is less than 2%.
Most of the models in our database being degenerate
meshes, we expect a volumetric representation cou-
pled with a suitable signature like spherical harmon-
ics [KFR03] will further improve our performance. Our
method is in complement with existing algorithms for
shape matching and hence we can use many of the
popular shape descriptors in our framework. However,
a careful study has to be done to fully evaluate these
benefits of our algorithm.

Mesh Authentication. Our scheme can be modi-
fied for authenticating geometric models. In the sig-
nature computation phase we increase the number of
bins making the spin-images sensitive to minor pertur-
bations. Then given a mesh and a partially modified
copy, we can use fingerprints to probabilistically iden-
tify regions that remain unchanged. For example, if we
compute such fragile fingerprints for the original skull
model and one corrupted with 1% (of the bounding
box) noise, their resemblance is 1.8%. However, if we
reorder the vertices, or apply any rigid transform to
the original mesh, the resemblance is almost 100%. Lo-
cal deformations or partial matches can be detected as
before. Moreover, for authentication, only a small fin-
gerprint needs to be transmitted and compared with
the fingerprint computed from a copy of the mesh.
Further investigation needs to be done for quantifying
immunity against other types of attacks [WC05].

5.1. Improvements and Limitations

Rabin’s method can hash similar signatures to very
different values. Such error can be reduced by using lo-
cality sensitive hashing (LSH) [IMRV97] where prob-
ability of collision between any two signatures is in-
versely related to their distance. In practice, this may
improve the resemblance estimates.

As seen in Figure 6, in some cases the scale ρ has a
significant effect on resemblance. To deal with this, we
can compute a multi-scale fingerprint over ν different
choices of ρ. Storage requirement increases ν fold.

In the current form, we cannot handle scaling.
Though pre-scaling of objects may be done using

59% 33% 26%

24% 19% 15%

query

Figure 11: Database Retrieval. Given a query shape,
we show the models retrieved by our algorithm from
a database of shapes in arbitrary poses. Our scheme
handles partial matches, and is robust to articulations.
Corresponding resemblance scores are shown.
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anisotropic scaling [KFR04], such a method fails for
partial similarities. We are currently researching other
possibilities to handle this scenario.

6. Conclusions

In this paper we have shown how to build compact
probabilistic fingerprints for digital geometry models
that allow efficient model comparison for partial or
total similarity. It is interesting that our scheme re-
lies on randomness for selecting the ‘shape features’
through the presence or absence of which similarity
is estimated. We give provable bounds on the quality
of our shape comparisons demonstrating the power of
randomization in a geometric context.

The compactness of our fingerprints may also en-
able distributed geometry processing tasks in sensor
network settings, where geometry acquisition, storage,
and retrieval may be required over geographically dis-
persed deployments.
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