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Motivation
Origami

Traditional Origami sculptures are produced according to simple
rules/principles:

• only straight folds are
allowed

• no tearing, cutting,
gluing

Resulting surfaces are de-
velopable – they can be
unfolded. Mathematically
speaking they are isometric
to a planar domain.



Motivation
Previous Work

More information on the algorithmic
treatment of straight folds in the book
by Demaine and O’Rourke.



Motivation
Curved Folding – Curved Crease Origami – Curvigami

Adding curved creases to the set of allowable folds complex and
elegant shapes can be designed with a small number of folds.

Models created by David Huffman and Gregory Epps. All models
are folded from a single sheet of paper.

[0] D. Huffman 76: Curvature and Crease: A Primer on Paper
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Motivation
Piecewise Developable Surfaces in Architecture

There is great interest in developable surfaces in architecture. The
Disney Concert Hall designed by Frank Gehry is a popular example.



Motivation
Piecewise Developable Surfaces in Architecture

Assembling developable surfaces at a common crease leads to the
tiling problem if the crease is not developable.



Motivation
Goal and State of the Art

Aid the user in the

• design,

• optimization,

• and approximation

with surfaces that can be produced by curved folding.



Developable Surfaces
Properties

Torsal ruled surfaces can be de-
composed into patches lying on

• planar regions

• cones

• cylinders

• tangent surfaces of space
curves

Pottmann and Wallner: Computational Line Geometry
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Discrete Developable Surfaces
Surface Representation I

Smooth vs. Discrete

Each patch just de-
scribed has a natural
representation as a dis-
crete surface.

• PQ strips

• triangle fans

• planar polygons
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Discrete Developable Surfaces
Surface Representation II

We use quad dominant meshes with planar faces (PQ meshes) to
model discrete developable surfaces.

• developability guaranteed

• rulings and curve of
regression are explicit

• maintaining planarity of
quads during subdivision
generates a developable
surface
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Discrete Developable Surfaces
Surface Representation III

A discrete developable surface is a collection of

• PQ-strips,

• triangle fans,

• planar polygons.

Each edge of such a mesh is either a

• ruling direction,

• part of a crease,

• part of a boundary curve.
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Curved Folding
Problem Formulation

Problem
Approximate an almost developable surface (e.g. obtained by 3D
scanning of folded models made of paper-like materials) by a
discrete developable surface



Curved Folding
Patch initialization

How to generate patches from measurement data

1 Estimate rulings, creases, and planar regions

2 (Approximately) unfold to the plane

3 Map rulings and creases to plane using the development

4 Generate a quad mesh aligned to rulings and creases

5 Map quads back to space using inverse development

6 Register corresponding faces
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Curved Folding
Ruling estimation I

Rulings are characterized as lines with constant surfaces normals.
For any two points on a ruling the geodesic distance and the
spatial distance are equal.

Compute creases with
[1]. Estimate ruling di-
rections in vertices away
from creases. Inte-
grate these directions
and find a sparse set of
good rulings.

[1] Ohtake et al: Ridge-valley lines on meshes via implicit surface fitting
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Curved Folding
Ruling estimation II

Ruling directions

Compute geodesic circle of radius rp around
each vertex p. A maximum of the score

σ(p) := np · nq + ν‖p − q‖/rp

characterizes a ruling direction if the geodesic disc is developable
(compare area to determine this).



Curved Folding
Ruling estimation III

Ruling extension

Extend previously computed ruling directions as long as the
deviation of surface normals is below a predefined threshold

Pruning

Use the mean deviation of normals along extended rulings as
quality measure. Keep best ruling. Discard all rulings inside a
certain neighborhood. Repeat exhaustively.
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Curved Folding
Unfolding

Use constrained shape deformation tool of [2] to unfold the model.
The z-coordinate of vertices are constrained to be zero.

[2] Kilian et al. 07: Geometric Modeling in Shape Space

[3] Liu et al. 08: A Local/Global Approach to Mesh Parametrization
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Curved Folding
Quad Mesh Initialization

• Extend rulings to boundary/crease.

• Coalesce close ruling endpoints.

• Remove T-junctions at creases by inserting a ruling on the
other side.
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Curved Folding
Result of Initialization

• planar mesh with tagged edges (ruling, crease, boundary),

• polygon soup in space,

• correspondence of faces.
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Curved Folding
Result of Initialization

Optimization

Optimize both the shape of planar faces and the spatial position
and orientation of corresponding congruent faces to make the
polygon soup a mesh. We use a PriMo-like approach to solve this
problem.

[4] Botsch et al. PriMo: Coupled Prisms for Intuitive Surface Modeling
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Curved Folding
The Objective Function

Main goal during optimization

Reduce the distance of corresponding edges and vertices of the
quad soup to make it a mesh. Optimization is subject to suitable
fairness conditions.

F = Fvert + λFfit + µFfair



Curved Folding
The Objective Function

The objective function in more detail

The objective function consists of vertex agreement, fairness, and
fitting terms.

Fvert :=
∑
p∈P

(mi
p − mj

p)
2

Ffit :=
∑
m∈M

((m − mc) · nc)
2

Ffair :=
∑
eij∈E

wij(n
i − nj)2

Vertices m belong to the polygon soup. Those vertices are related
to vertices p of the planar mesh by a rigid body motion.
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Curved Folding
The Fairness Functional I

Bending energy

The bending energy of a surface patch S is defined as

E =

∫
S

κ2
1 + κ2

2dA

with principal curvatures κ1, κ2.

• Rulings constitute principal curvature lines corresponding to
principal curvature 0.

• Define the other family of curvature lines motivated by the
theory of circular meshes as orthogonal trajectories of ruling
bisectors (see Bobenko and Suris, Discrete Differential
Geometry. Consistency as Integrability).
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Discrete Developable Surfaces
Some Discrete Differential Geometry

We compute the bending energy of a PQ strip bounded by two
discrete principal curvature lines C and C̄ .

• Li = ‖mi − mi−1‖
• Ni = ‖ni − ni−1‖
• κ2 = Ni/Li

• wi = h log(L̄i )−log(Li )

L̄i−Li

• Ebend =
∑

wi‖ni − ni−1‖2
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Curved Folding
The Basic Optimization

Pick a frame (o, e1, e2) in the plane. Then

p = o + pxe1 + pye2

mi
p = oi + pxe

i
1 + pye

i
2

since corresponding faces are congruent and the frames are related
by a rigid body motion.
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• Optimizing M changes the rigid body motion

• Optimizing P changes the coordinates px and py
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Curved Folding
The Basic Optimization

Initialization //

Optimization

Optimize M

Optimize P

//

@A BC
OOSubdivision

EDGF
��

We optimize the spatial position of the faces of M and the
geometry of the faces of P in an alternating fashion.



Curved Folding
Subdivision

Subdivision occurs only in ruling direction. Only creases and
boundary edges are split during subdivision.



Curved Folding
Results



Curved Folding
Digital Paper Models
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Curved Folding
More Results

No reference surface
but boundary con-
ditions on tangent
planes.

[5] Bo and Wang 07: Geodesic-controlled developable surfaces for

modeling paper bending



Curved Folding
Surface Design



Curved Folding
Time

Timings for models seen in the gallery of digital paper models. A
50K triangles reference surface was used in all examples.

Ruling extraction 160 sec
Mesh layout 20 sec
Optimization 140 sec

Three rounds of subdivision were performed. The objective
function was reduced to order 10−4.


