
EUROGRAPHICS 2013 / M.- A. Otaduy, O. Sorkine Short Paper

Graph Abstraction for Simplified Proofreading of
Slice-based Volume Segmentation

Ronell B. Sicat Markus Hadwiger Niloy J. Mitra

KAUST KAUST University College London

Abstract

Volume segmentation is an integral data analysis tool in experimental science. For example, in neuroscience,
analysis of 3D volumes of neural structures from electron microscopy data is a key analysis step. Despite advances
in computational methods, experts still prefer to manually proofread and correct the automatic segmentation
outputs. Such corrections are often annotated at the level of data slices in order to minimize distortion artifacts
and effectively handle the massive data volumes. In absence of crucial global context in 3D, such a workflow
remains tedious, time consuming, and error prone. In this paper, we present a simple graph-based abstraction
for segmentation volumes leading to an interactive proofreading tool making the process simpler, faster, and
intuitive. Starting from an initial volume segmentation, we first construct a graph abstraction and then use it to
identify potential problematic regions for the user to investigate and correct spurious segmentations, if identified.
We also use the graph to suggest automatic corrections, thus drastically simplifying the proofreading effort. We
implemented the proofreading tool as an Avizo c©plugin and evaluated the method on complex real-world use cases.

1. Introduction

Segmenting volumetric data is at the heart of many data
analysis tasks in science. Given the importance of reliable
segmentation in such analysis tasks, practitioners still pre-
fer to manually investigate and correct the output of auto-
matic segmentation algorithms in a subsequent proofread-
ing stage. For example, the extraction of 3D geometric
representations of neurons from electron microscopy (EM)
images is an important task in neuroscience, especially
in connectomics [LD11] where the goal is to map out
all neural connections of the mammalian brain. A typical
pipeline [CVS10] involves registration, segmentation, link-
age, proofreading, and annotation. Despite advances in auto-
matic registration and segmentation techniques, the segmen-
tation outputs are typically manually proofread by experts.
Even for moderate volumes of data, e.g., 108-109 voxels, the
process is extremely tedious and can take several hours.

Proofreading involves two main steps: (i) searching for
slices that contain segmentation errors, and (ii) correcting
the segmentation errors, typically by splitting or merging
segments. With increasing access to complex volumetric
data, the proofreading step is becoming a real bottleneck,
where proofreading can at times take longer than just manu-
ally segmenting an entire neuron [PLZM11]. The process is
cumbersome as most proofreading tools only allow users to
operate at the level of individual slices, without any global

3D context. This makes searching for segmentation errors
tedious. There is only little support to facilitate such proof-
reading efforts [JST10]. Peng et al. [PLZM11] provide intu-
itive 3D tracing and proofreading tools, but the 3D segmen-
tation volumes can become complex to navigate, especially
in complex datasets with many intertwined structures.

Figure 1: (Left) Given a stack of volume slices with seg-
mented regions (e.g., top-right shows a single slice with seg-
ments highlighted), we construct a graph abstraction by es-
tablishing edges between segments from neighboring slices.
The graph gives a very low-cost approximation to the skele-
tons of the connected segment volumes.

c© The Eurographics Association 2013.



Sicat, Hadwiger, Mitra / Graph Abstraction for Simplified Proofreading

In this short paper, we propose a simple 3D graph-based
segmentation abstraction to make proofreading easier, faster,
and more intuitive. Given an initial slice-level volume seg-
mentation, we first construct a graph, where each node de-
notes a segment area and each edge connects two corre-
sponding nodes across neighboring slices. Here, we focus on
volumetric data of neural structures and hence a connected
component in the graph represents a single neural structure
in the data (see Figure 1). In addition to storing a boundary
contour at each node, we compute a measure of segmenta-
tion consistency to indicate potential artifacts.

We use the graph abstractions to detect potentially incon-
sistent segmentations, propose automatic corrections, and
highlight uncertain regions to allow the user to further refine
the segments. We demonstrate our framework on a represen-
tative dataset [KFB10] obtained using electron microscopy
of a mouse cortex (datasize: 1024×1024×150).

Related works. Kaynig et al. [KFB10] formulate the link-
age problem in their 3D neuron reconstruction pipeline as
partitioning an edge-weighted graph into connected com-
ponents to group segmented regions belonging to the same
neural structure. They also construct a graph where nodes
in one slice are connected by weighted edges to all nodes
in the adjacent slices. Edge weights denote if the nodes be-
long to the same neural structures. Unlike their approach,
instead of discarding the graph after the initial reconstruc-
tion, we demonstrate that a modified version simplifies the
proofreading of the segmentation results. In the context of
man-made objects, Mehra et al. [MZL∗09] use curve net-
works to abstract objects, while Li et al. [LLZM10] propose
arterial snakes to simultaneously abstract the topology and
geometry of the curve-like 3D objects.

Earlier, Sherbondy et al. [SHN03] used hardware assis-
tance to interactively view the current 3D segment volumes
to assist interactive segmentation. In contrast, we present
a lightweight abstraction suitable to assist manipulation of
very large datasets while still providing necessary searching
and correction support for assisted proofreading.

2. Graph Construction

Given a stack of segmented images I1, I2, . . . , we first con-
struct a graph abstraction. We go through each slice and
compute the boundary contour of each of its segmented re-
gions using iso-contour extraction. For each such closed seg-
mented region Ri in the i-th slice, its center of mass cRi ∈R3

becomes a node in the embedded graph. We connect pairs of
nodes from adjacent slices if the projections of the respective
segments overlap, i.e., Ri∩Π(Ri+1) 6= ∅, where Π(Ri+1) de-
notes projection of a segment from the (i+1)-th slice to the
i-th slice. Figure 1 shows an example abstraction graph. Al-
though more advanced versions of graph construction can be
used [KFB10], we found such a simpler construction to be
sufficient given the high slice density of the input data.

graph abstractions

nodes weighted
by inconsistency

graph abstractions

nodes weighted
by inconsistency

toptop

currentcurrent

bottombottom

Figure 2: A raw graph abstraction (top-right) does not im-
mediately highlight potential erroneous regions. We weigh
the nodes based on their local inconsistencies (bigger nodes
denoting higher inconsistency) to quickly identify regions to
focus on. (Bottom-right) Here, we highlight two threads. The
user then selects a node and we show the relevant segmen-
tation slices — the subfigures (left) show three neighboring
slices according to the highlighted orange node.

Once we compute the graph from all the segmented re-
gions in the input data, we use it to steer visualization of
the segmented neural structures (see Figure 2 top-right). We
call each connected component of the graph a thread, denot-
ing abstraction for the respective segmentation volume. The
graph provides a preview of the size (based on the lengths of
the threads), orientation (based on the traces of the threads),
and density (based on the density of the threads) of the de-
tected neural structures in the data.

Besides providing a quick data preview and an explo-
ration handle to navigate through the segmented input slices
(see supplementary video), the graph also provides impor-
tant clues regarding the quality and consistency of the in-
put segmentation. We make two observations: (i) smooth
threads denote that the segments evolve continuously across
the slices; and (ii) sharp changes or jagged parts of threads
indicate sharp segmentation changes across neighboring
slices (see Figure 2). Typically, such jagged features indicate
wrong segmentations, which can easily be corrected using
information from neighboring slices. Based on these obser-
vations, we introduce proofreading tools, as described next.

c© The Eurographics Association 2013.



Sicat, Hadwiger, Mitra / Graph Abstraction for Simplified Proofreading

3. Proofreading Tasks

Error visualization and user guidance. Input slices that
have been segmented individually can often contain incon-
sistencies. To support the proofreading process, we use our
graph abstractions to quickly locate and investigate such seg-
mentation inconsistencies, which appear as sharp node tran-
sitions in the threads of the graph (see Figure 2). Empiri-
cally, we observed that such sharp node transitions are either
due to missing regions or holes; or incorrectly included re-
gions or extensions (see Figure 3). Building on this obser-
vation, we compute an inconsistency weight for each node
to capture the smoothness of the node transitions and the
overlap between segments from adjacent slices. Specifically,
ERi for the node corresponding to the region R in slice i is
given by ERi := αDRi +(1−α)ORi , where DRi is the error
weight measured by node distances, ORi is the error weight
measured by region overlaps, and α ∈ [0,1] specifies rela-
tive weights (α = 0.5 as default). For ORi , for each adjacent
node of Ri, say Ri−1, we first compute the sum of the pixels
in the two regions PRi +PRi−1 and the number of overlapping
pixels 2×#(Ri∩Ri−1) (the multiplication by two counts the
common pixels from both regions). The error weight con-
tributed by the overlap with one adjacent region is then mea-
sured as the ratio of the number of non-overlapping pix-
els from both regions to their total number of pixels, i.e.,
PRi+PRi−1−2×#(Ri∩Ri−1)

PRi+PRi−1
. We then take the average of these

weights for all adjacent regions. Specifically, for Ri with ad-
jacent regions Ri−1 and Ri+1,

DRi = min
(

1,
‖cRi − cRi−1‖+‖cRi − cRi+1‖

2β

)
,

where the cRi are the centers of mass (see above), β is a scale
factor (we use 10% of the image diagonal), and

ORi =

PRi+PRi−1−2×#(Ri∩Ri−1)

PRi+PRi−1
+

PRi+PRi+1−2×#(Ri∩Ri+1)

PRi+PRi+1

2
.

We then use the inconsistency score of each node to scale
the sphere that represents the node in the graph visualization
(see Figure 2). Insets of the segmented regions of the current
node with high inconsistency (as indicated by the large node
sizes in the graph visualization) and its neighboring slices
are also displayed. Such a graph provides a quick preview of
the segmentation data to facilitate proofreading and allows
the users to focus on potentially erroneous regions by visual
inspection or by providing the user with a list of nodes sorted
by their inconsistency scores.

Correcting erroneous segmentations. Subsequently, the
user selects a node to apply corrections. Whenever the user
selects such a node, we show the slicing plane with the seg-
mented region overlayed on top of the original EM image.
We also highlight the segmented regions of the current node
and their neighboring nodes and display them on three sep-
arate panels to help the user identify the problematic areas.

previous slice next slice

before correction after correction

Figure 3: (Top) Jagged corners of graph threads help to
quickly identify potentially erroneous regions. We use seg-
mentation information from the neighboring slices (middle
row) to automatically propose corrections to the segmenta-
tions (bottom row).

The user can then manually correct the erroneous segmenta-
tion using Avizo’s built-in Segmentation Editor while focus-
ing on the region of interest automatically set to the target
region. Furthermore, the user can use a brush tool to remove
or add pixels in the segmented region.

In order to simplify the correction procedure, we also pro-
vide an automatic proofreading function, which tries to cor-
rect a node’s segmented region using our previous assump-
tions on the data (smooth shape transitions among adjacent
slices). The process runs in two steps: (i) the average bound-
ing box of the regions above and below the target region are
used to clip out extensions or incorrectly included pixels.
While our implementation uses rectangular bounding boxes
for simplicity, complex polygons (e.g., convex hulls) could
be used for better results; (ii) holes in the target region are

c© The Eurographics Association 2013.



Sicat, Hadwiger, Mitra / Graph Abstraction for Simplified Proofreading

input segmentation

after autocorrection

after autocorrection
+ manual proofreading

Figure 4: Starting from input segmentations (top), we first
apply autocorrection (middle), and then the user manually
refines the segments using the proposed graph-based explo-
ration tool to produce a final volume segmentation (bottom).
The proofreading took less than 5mins. with our tool in con-
trast to 1-2 hours in existing workflows (c.f., [PLZM11]).

filled by processing the pixels in the new region bounding
box and including a pixel in the target region (filling a miss-
ing pixel) if the corresponding pixel exists in the neighbor-
ing regions, i.e., the current pixel pRi ∈ (Ri−1∩Ri+1). While
this simple automatic proofreading function does not guar-
antee perfect corrections, it drastically reduces the manual
effort requiring the user to refine only regions that are still
ambiguous (see Figures 3 and 4).

Automatic proofreading. The user can apply the automatic
correction described above on all the nodes in the graph,
thus decreasing the amount of manual proofreading effort
needed. Specifically, the user can go through each connected
component of each neural structure and apply the automatic
proofreading function on each node in order of decreasing
inconsistency, if the node inconsistency score is above a user
specified threshold (0.15 in our tests). Alternatively, the user
can focus on a single neural structure by applying this step
only on the respective connected component.

The process can be repeated several times since a single
run may still leave some large errors, with the user always
having the option to intervene with manual corrections. Note
that the automatic proofreading process is different from
simply smoothing the segmentation volumes (e.g., Laplacian
smoothing), which can lead to spurious segments that dras-
tically affect the already-correct neighboring segments.

We tested our framework on a dataset of moderate com-
plexity (1024× 1024× 150). The graph construction took
about 8 minutes for 44 segments (total of 2892 nodes), using
an unoptimized plugin implementation in the Avizo frame-
work. Subsequent exploration, interaction, and correction
ran at near-interactive rates (see supplementary video).

4. Conclusion

We have introduced a simple graph as an intuitive abstrac-
tion for 3D volumetric segmentation data that can be used
to assist proofreading of slice-based segmentations, and pre-
sented initial results obtained using our tool on a real brain
tissue dataset. We have shown how the graph can be used
to visualize neural structures, help users to focus on regions
with possible errors, apply proofreading operations on seg-
mented regions, and reduce the overall proofreading effort
needed for the dataset. In the future, we will focus on robust
construction of the graph abstractions and investigate further
graph-assisted exploration and correction tools.

5. Acknowledgements

We thank Verena Kaynig for her help and the dataset, and
our collaborators at the Harvard Center for Brain Science.

References
[CVS10] CHKLOVSKII D. B., VITALADEVUNI S., SCHEFFER

L. K.: Semi-automated reconstruction of neural circuits using
electron microscopy. Neurobiology 20, 5 (2010), 667–75. 1

[JST10] JAIN V., SEUNG H. S., TURAGA S. C.: Machines that
learn to segment images: a crucial technology for connectomics.
Current opinion in neurobiology 20, 5 (2010), 653–66. 1

[KFB10] KAYNIG V., FUCHS T. J., BUHMANN J. M.: Geomet-
rical consistent 3d tracing of neuronal processes in sstem data. In
Proc. MICCAI (2010), pp. 209–216. 2

[LD11] LICHTMAN J. W., DENK W.: The big and the small:
Challenges of imaging the brain’s circuits. Science 334, 6056
(2011), 618–623. 1

[LLZM10] LI G., LIU L., ZHENG H., MITRA N. J.: Analy-
sis, reconstruction and manipulation using arterial snakes. ACM
Trans. Graph. 29, 6 (2010), 152:1–152:10. 2

[MZL∗09] MEHRA R., ZHOU Q., LONG J., SHEFFER A.,
GOOCH A., MITRA N. J.: Abstraction of man-made shapes.
ACM Transactions on Graphics 28, 5 (2009), #137, 1–10. 2

[PLZM11] PENG H., LONG F., ZHAO T., MYERS E.: Proof-
editing is the bottleneck of 3d neuron reconstruction: The prob-
lems and solutions. Neuroinformatics, 9 (2011), 103–5. 1, 4

[SHN03] SHERBONDY A., HOUSTON M., NAPEL S.: Fast Vol-
ume Segmentation With Simultaneous Visualization Using Pro-
grammable Graphics Hardware. IEEE Visualization (2003). 2

c© The Eurographics Association 2013.


