
Pacific Graphics 2013
B. Levy, X. Tong, and K. Yin
(Guest Editors)

Volume 32 (2013), Number 7

Guided Real-Time Scanning of Indoor Objects

Young Min Kim? Niloy J. Mitra† Qixing Huang? Leonidas Guibas?

?Stanford University †University College London

Abstract
Advances in 3D acquisition devices provide unprecedented opportunities for quickly scanning indoor environ-
ments. Such raw scans, however, are often noisy, incomplete, and significantly corrupted, making semantic scene
understanding difficult, if not impossible. Unfortunately, in most existing workflows, scan quality is assessed af-
ter the scanning stage is completed, making it cumbersome to correct for significant missing data by additional
scanning. In this work, we present a guided real-time scanning setup, wherein the incoming 3D data stream is
continuously analyzed, and the data quality is automatically assessed. While the user is scanning an object, the
proposed system discovers and highlights potential missing parts, thus guiding the operator (or an autonomous
robot) as where to scan next. The proposed system assesses the quality and completeness of the 3D scan data by
comparing to a large collection of commonly occurring indoor man-made objects using an efficient, robust, and
effective scan descriptor. We have tested the system on a large number of simulated and real setups, and found the
guided interface to be effective even in cluttered and complex indoor environments.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

Navigating, acquiring, and understanding complex environ-
ments is a critical component for any autonomous robotics
system. While for outdoor environments such a system can
proceed based on provided maps, road markings, or GPS
data, for indoor environments such useful information is ei-
ther unreliable or simply unavailable. Furthermore, indoor
environments tend to be both more cluttered and more vari-
able over time, further complicating the task of reconstruc-
tion. Thus, for successful autonomous navigation and task
completion in novel indoor scenes, it is necessary to simul-
taneously scan the environment, interpret the incoming data
stream, and plan subsequent data acquisition, all in real-time.

It is now possible to obtain real-time 3D scans using
portable commercial scanners (e.g., the Microsoft Kinect
scanner); such 3D data can be very valuable in building
useful, semantically-meaningful models of the environment.
The challenge is, however, that individual frames from such
scanners are often of poor quality (i.e., noisy point-clouds,
with outliers, large regions missing, etc.). Typically, com-
plex geometry can only be acquired by accumulating multi-
ple scans. Information integration is done in a post-scanning
phase, when individual scans are registered and merged,

leading eventually to useful object models. Such a workflow,
however, is limited by the fact that poorly scanned or miss-
ing regions are only identified after the scanning process is

Figure 1: We introduce a real-time guided scanning system.
As streaming 3D data is progressively accumulated (top),
the system retrieves the top matching models (bottom) along
with their pose to act as geometric proxies to assess the cur-
rent scan quality, and provide guidance for subsequent ac-
quisition frames. Only a few intermediate frames with corre-
sponding retrieved models are shown in this figure.
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finished, when it may be costly to revisit the environment be-
ing acquired to perform additional scans. We focus on real-
time 3D model quality assessment and data understanding in
order to provide immediate feedback for guidance in subse-
quent acquisition.

Evaluating acquisition quality without having any prior
knowledge about an unknown object is an ill-posed task.
We observe that although the target object itself maybe un-
known, in many cases, it comes from a well-prescribed pre-
defined set of object categories. Moreover, these categories
are well represented in existing shape repositories (e.g.,
Trimble 3D Warehouse). For example, an office setting typ-
ically consists of various tables, chairs, monitors, etc., all of
which have thousands of instances in the Trimble 3D Ware-
house. Hence, instead of trying to recover detailed 3D ge-
ometry from low-quality inconsistent 3D measurements, we
focus on parsing the input object scans into simpler geomet-
ric entities, and use publicly available 3D model repositories
like Trimble 3D warehouse as proxies to assist the process of
assessing data quality. To this end, we have to overcome two
key challenges: (i) Given a partially scanned object, reliably
and efficiently retrieve appropriate proxy models from the
database; and (ii) position the retrieved models in the scene
and provide real-time feedback (e.g., missing geometry that
still needs to be scanned) to guide subsequent data gathering.

We introduce A2h, a novel shape descriptor for retrieval
of similar shapes of a query partial scan. Subsequently, we
use the A2h descriptor, to enable guided real-time scan-
ning using a Microsoft Kinect scanners. The proposed ap-
proach, which combines both descriptor-based retrieval and
registration-based verification, is able to search in a database
of thousands of models, in real-time. To account for par-
tial similarity between the input scan and the models in a
database, we created simulated scans of each database model
and compared a scan of real setting to a scan of simulated
setting. This allowed us to efficiently compare shapes us-
ing global descriptors even in the presence of only partial
similarity; and the approach remains robust in the case of
occlusions or missing data about the object being scanned.

In order to identify problematic regions of the current
scan, our system aligns the retrieved match with the partial
scan and highlights potential missing parts or places where
the scan density is low. This visual feedback allows the op-
erator to quickly adjust the scanning device for subsequent
scans. In effect, our 3D model database and matching algo-
rithms make it possible for the operator to assess the quality
of the data being acquired and discover badly scanned or
missing areas while the scan is being performed, thus allow-
ing corrective actions to be taken immediately.

We extensively evaluated the robustness and accuracy of
our system using synthetic data sets with available ground
truth. Further, we tested our system on typical office envi-
ronments to achieve real-time object scanning (see the sup-
plementary video that includes the actual scanning session

recorded). In summary, we present a novel guided scanning
interface and introduce a relation-based light-weight A2h
descriptor for fast and accurate model retrieval and position-
ing to provide real-time guidance for scanning.

2. Related Works

Interactive acquisition. Fast, accurate, and autonomous
model acquisition has long been primary goals in com-
puter graphics and computer vision. With the introduc-
tion of affordable, portable, commercial RGB-D cameras,
there has been a pressing need to simplify scene acquisition
workflows to allow less experienced individuals to acquire
scene geometries around them. Recent efforts fall into two
broad categories: (i) combining individual frames of low-
quality point-cloud data with SLAM algorithms [EEH∗11,
HKH∗12] to improve scan quality [IKH∗11]; and (ii) us-
ing supervised learning to train classifiers for scene label-
ing [RBF12] with applications to robotics [KAJS11]. Pre-
viously, [RHHL02] aggregated scans at interactive rates to
provide visual feedback such that a user can deliberately fill
in the missing area and overcome registration errors. This
work was recently expanded by [DHR∗11] to use RGB-D
cameras. However, there very few attempts to provide feed-
back in terms of higher-level interpretation of the scan. Kim
et al. [KDS∗12] extract simple planes and reconstruct floor
plans with guidance from a projector pattern. While our goal
is also to provide real-time feedback, our system differs from
previous efforts in using retrieved proxy models to automat-
ically access the current scan quality, enabling object-level
understanding and provide guidance accordingly.

Scan completion. Various strategies have been proposed
to improve noisy scans or plausibly fill in missing data
due to occlusion (off-line): researchers have exploited rep-
etition [PMW∗08], symmetry [TW05, MPWC12], or used
primitives to complete missing parts [SWK07]. Other ap-
proaches have focused on using geometric proxies and ab-
stractions including curves, skeletons, planar abstractions,
etc. In the context of image understanding, indoor scenes
have been abstracted and modeled as a collection of simple
cuboids [LGHK10, ZCC∗12, KLM∗13] to capture a variety
of man-made objects.

Part-based modeling. Simple geometric primitives, how-
ever, are not always sufficiently expressive for complex
shapes. However, such objects can still be split into sim-
pler parts that aid shape understanding. For example, parts
can act as entities for discovering repetitions [TSS10], train-
ing classifiers [SFC∗11, XS12], or facilitating shape syn-
thesis [JTRS12]. Multiple objects of a single category can
also be represented by a smaller set of part-based tem-
plate [KLM∗13]. Such methods often rely on expensive
matching, and thus do not lend themselves to low-memory
footprint real-time realizations.

Template-based completion. Real 3D scans suffer from
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noise and occlusion, which could be completed by ge-
ometrically matching templates [HCI∗11], or using tem-
plates to complete missing parts [PMG∗05] A similar
line of recent works includes detecting pre-defined 3-D
models (usually 100-200 models) for indoor understand-
ing [SXZ∗12, NXS12, KMYG12], or scan-based 3-D shape
retrieval [BP13, SPT12]. Our system also uses database of
3D models (e.g., chairs, lamps, tables) to retrieve shape from
3D scans. However, by introducing A2h, a novel simple de-
scriptor, compared to previous efforts, our system reliably
handles much larger model databases (thousands of models
instead of hundreds of models).

Shape descriptors. In the context of shape retrieval, vari-
ous descriptors have been investigated for grouping, classi-
fication, or retrieval of 3D geometry [FKMS05], and we do
not attempt to name them all. Among them, only a small
number of descriptor might be suitable for compact for real-
time application and robust to noise enough to be used in
real-data. For example, the method proposed by [CTSO03]
uses light-field descriptors based on silhouettes, the method
by [OFCD02] uses shape distributions to categorize differ-
ent object classes, etc. Both methods assume access to nearly
complete models to match against. The silhouette method re-
quires an expensive rotational alignment search, limiting its
usefulness in our setting to a small number of models. Our
system searches for consistency in distribution of relation
among primitive faces, similar to [RE11], but our represen-
tation is simpler and specifically designed for noisy, partial
scans instead of full 3-D models.

3. Overview

Our goal is to quickly assess the quality of the current scan
and guide the user in subsequent scans. However, there are
several challenges: (i) the system has to assess model qual-
ity without necessarily knowing he model; (ii) the scans are
potentially incomplete, with large parts of data missing; and
(iii) the system should respond in real-time.

First, we observe that existing database models such as
Trimble 3D warehouse models can be used as proxies for
evaluating scan quality of similar objects being scanned, thus
addressing the first challenge. Hence, for any merged query
scan (i.e., pointcloud) S, the system looks for a match among
similar models in the databaseM= {M1, · · ·MN}. For sim-
plicity, we assume that the models to have a consistent up-
right orientation as commonly found in existing databases.

To handle the second challenge, we note that missing data,
even in large chunks, are mostly the result of self occlusion,
and hence are predictable. Specifically, our system syntheti-
cally scans the models Mi from different viewpoints to simu-
late such self occlusions. This greatly simplifies the problem
by allowing us to directly compare S to the simulated scans
of Mi, thus automatically accounting for missing data in S.

Finally, to achieve real-time performance, we propose a
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Figure 2: Pipeline of the proposed system.

simple, robust, yet effective descriptor to match S to view-
dependent scans of Mi. Subsequently, the system performs
registration to verify the match between each matched sim-
ulated scan and the query scan, and returns the most similar
simulated scan and the corresponding model Mi.

Figure 2 illustrates the pipeline of our guided real-
time scanning system, which consists of a scanning device
(Kinect in our case) and a database of 3D shapes containing
the categories of the shapes present in the environment. For
both domains, we produce pointcloud data and calculate the
A2h descriptors and density voxels (see Section 4). Partial
shape retrieval proceeds in two stages: candidate matches
are quickly found using the proposed descriptor followed by
comparison using density voxels. The retrieved shape is then
compared with the scanned point set to provide guidance to
the user, if necessary. The process iterates until a sufficiently
good match is found (see supplementary video).

3.1. Interface Design

The real-time system guides the user to scan an object and
retrieve the closest match. In our study, we used the Kinect
scanner for the acquisition and the retrieval process took
5-10 seconds/iteration on our unoptimized implementation.
The user scans an object from an operating distance of about
1-3m and we assume that the query object is separated from
background and placed on the ground plane, thus upright
orientation can be easily acquired. The sensor data of real-
time video stream of depth pointcloud and color images are
visible to the user at all times (see Figure 3, bottom-left).

Initialization. The user starts scanning by pointing the sen-
sor to the ground plane. The ground plane is detected if the
sensor captures a dominant plane that covers more than 50%
of the scene. Our system uses this plane to extract the upright
direction of the captured scene. When the ground plane is
successfully detected, the user receives an indication on the
screen (Figure 3 top-right).
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Figure 3: The proposed guided real-time scanning setup
is simple to use. The user starts by scanning using a Mi-
crosoft Kinect (top-left). The system first detects the ground
plane and the user is notified (top-right). The current point-
cloud corresponding to the target object is displayed in the
3D view window, the best matching database model is re-
trieved (overlaid in transparent white), and the predicted
missing voxels are highlighted as yellow voxels (middle-
right). Based on the provided guidance, the user acquires the
next frame of data, and the process continues. Our method
stops when the retrieved shape explains well the captured
pointcloud. Finally, the overlaid 3D shape is highlighted in
white (bottom-right). Note that the accumulated scans have
significant parts missing in most scanning steps.

Scan acquisition. The input stream is collected and pro-
cessed using an open-source implementation [EEH∗11] that
calibrates the color and depth measurements and outputs the
pointcloud data. The color features of individual frames are
then extracted and matched from consecutive frames. The
corresponding depth values are used to incrementally regis-
ter the depth measurements [HKH∗12]. Note that the view-
point of the sensor cannot drastically change from the ini-
tial point-of-view due to the limitation of real-time registra-
tion, and we thus we cannot simply extend existing shape
retrieval methods using full models. The pointcloud that be-
longs to the object is segmented as the system detects the
ground plane and exclude the points that belong to the plane
and depth thresholding. We will refer to the segmented, reg-
istered set of depth measurements as a merged scan S. In a
separate window, the pointcloud data corresponding to the
object being captured is continuously displayed.

Partial shape retrieval. Whenever each new frame is pro-
cessed, the system calculates the A2h descriptor and the den-
sity voxels from the pointcloud data for the merged scan. For
shape retrieval, our system first performs a descriptor-based
similarity search against the entire database to obtain a can-
didate set of similar models. Finally, the system performs
registration of each candidate model with the merged scan
and returns the model with the best alignment score. The
challenge is how to maintain real-time performance during
the retrieval process. The technical details of the shape re-
trieval process is described in Section 4.

Scan evaluation. Once the best matching model is retrieved,
the proxy is displayed for the user overlaid with yellow
voxels (Figure 3 middle-right). The yellow voxels indicate
where the missing data is, and the user can then acquire
the next scan around the area. Specifically, the system com-
pares the density voxels of the best-matching model and the
current merged scan S, and highlights the voxels that the
matched model has more than average number of points, but
the current measurement has low density. Based on this guid-
ance, the user can then acquire the next scan. The system au-
tomatically finishes when the retrieved best match model is
close enough to the current measurement (when the missing
voxels are less than 1% of total number of voxels) (Figure 3
bottom-right).

4. Partial Shape Retrieval

As mentioned in Chapter 3, we use simulated scans to pre-
dict self-occlusion and compare database of models against
partial, noisy scan data (Section 4.1). We take a two-stage
process to achieve both accuracy and efficienty. First, candi-
date matches are retrieved from a large database of model
with help of our suggested new descriptor (Section 4.2).
From the first stage, the system keeps a few top candidate
matches that have to be verified by more detailed volumetric
comparison (Section 4.3) based on density voxels to find the
best match.

While we observed the A2h descriptor is efficient and
good at capturing local geometric features, the entire shape
structure can better be captured by aligning the 3-D shapes
and comparing relative 3-D locations. Both alignment step
and volumetric comparison step require more computation
time given the size of our database models, and we perform
them only for top 25 candidate matches extracted using the
proposed descriptor. The number of candidate matches (25)
after descriptor comparison is chosen empirically based on
our performance on the real scan data, that contain at least 3-
5 good matched models after about 10 seconds of scanning
session while still maintaining real-time performance.

4.1. View-Dependent Simulated Scans

For each model Mi, the system generates simulated scans
Sk(Mi) from multiple camera positions, where the super-
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script k represent the index to the camera location. Let ~dup
denote the up-right orientation for model Mi. Our system
takes ~dup as the z-axis and arbitrarily fixes any orthogonal
direction ~di (i.e., ~dT

i
~dup = 0) as the x-axis. The system also

translates the centroid of Mi to the origin.

The system then virtually positions the cameras at the sur-
face of a view-sphere around the origin. Specifically, the
camera is placed at

~ci := (2d cosθsinφ,2d sinθsinφ,2d cosφ)

where d denotes the length of the diagonal of the bounding
box of Mi, and φ denotes the camera latitude. The camera
up-vector is defined as

~ui :=
~dup−< ~dup,~ci >~ci

‖~dup−< ~dup,~ci >~ci‖
with~ci =~ci/‖~ci‖

and the gaze point is defined as the origin. The fields of view
are set to π/2 in both the up and horizontal directions.

For each such camera location, our system obtains a
synthetic scan using the z-buffer with a grid setting of
200× 200. Our system places K samples of θ, i.e., θ =
2kπ/K where k ∈ [0,K) and φ = {π/6,π/3} to obtain view-
dependent simulated scans for each model Mi. Empirically,
we set K = 6 to balance between efficiency and quality when
comparing simulated scans and the merged scan S. Note
that this is a very coarse sampling compared to conven-
tional settings for light-field descriptor or view-point based
approach, but K = 6 was good enough to capture necessary
self-occlusion utilizing the depth information.

4.2. A2h Scan Descriptor

Our goal is to design a descriptor that (i) is efficient to com-
pute, (ii) is robust to noise and outliers, and (iii) has a low-
memory footprint. We draw inspiration from shape distri-
butions [OFCD02] that computes statistics about geometric
quantities that are invariant to global transforms, e.g., dis-
tances between pairs of points on the models. Shape distri-
bution descriptors, however, were designed to be resilient to
local geometric changes. Hence, they are ineffective in our
setting, where shapes are distinguished by subtle local fea-
tures. Instead, our system computes the distributions of an-
gles between point normals, which better capture the local
geometric features. Further, since the system knows the up-
right direction of each shape,this information is incorporated
into the design of the descriptor.

Specifically, for each scan S (real or simulated), our sys-
tem first allocates the points into three bins based on their
height along the z-axis, i.e., the up-right direction. Then,
among the points within each bin, the system computes the
distribution of angles between all pairs of points. Recall
that the points have associated normal directions. The angle
space is discretized using 50 bins between [0,π], e.g., each
bin counts the frequency of normal angles within each bin.

query

query

D2

D2

A2h

A2h

aligned model

aligned model

Figure 4: Representative shape retrieval results using the
D2 descriptor ( [OFCD02], first row), the A2h descriptor
introduced in this chapter (Section 4.2, second row), and
the aligned models after scan registration (Section 4.3, third
row). For each method, we only show the top 4 matches. The
D2 and A2h descriptor (first two rows) are compared by his-
togram distributions, which is a quick and efficient. Empiri-
cally, we observed the A2h descriptor to better capture local
geometric features compared to the D2 descriptor, with local
registration further improving the retrieval quality. The com-
parison based on 3D alignment (third row) is more accurate,
but require more computation time, and cannot be performed
in real-time given the size of our database of models.

We call this the A2h scan descriptor, which for each point
cloud is a 50×3 = 150 dimensional vector; this collects the
angle distribution within each height bin.

In practice, for pointclouds belonging to any merged scan,
our system randomly samples 10,000 pairs of points within
each height bin to speed-up the computation. In our exten-
sive tests, we found this simple descriptor to perform better
than distance-only histograms in distinguishing fine variabil-
ity within a broad shape class (see Figure 4).

4.2.1. Descriptor-Based Shape Matching

A straightforward way to compare two descriptor vectors ~f1
of ~f2 is to take the Lp norm of their difference vector ~f1−~f2.
However, the Lp norm can be sensitive to noise and does
not account for the similarity of distribution between similar
curves. Instead, our system uses the Earth Mover’s distance
(EMD) to compare a pair of distributions [RTG98]. Intu-
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Figure 5: Retrieval results with simulated data using a chair
data set. Given the model in the first column, the database of
2138 models are matched using the A2h descriptor, and the
top 5 matches are shown.

itively, given two distributions, one distribution can be seen
as a mass of earth properly spread in space, the other distri-
bution as a collection of holes that need to be filled with that
earth. Then, the EMD measures the least amount of work
needed to fill the holes with earth. Here, a unit of work cor-
responds to transporting a unit of earth by a unit of ground
distance. The costs of “moving earth” reflect the notion of
nearness between bins; therefore the distortion due to noise
is minimized. In a 1D setting, EMD with L1 norms is equiv-
alent to calculating an L1 norm for cumulative distribution
functions (CDF) of the distribution [Vil03]. Hence, our sys-
tem achieves robustness to noise at the same time complex-
ity as calculating an L1 norm between the A2h distributions.
For all of the presented results, our system used EMD with
L1 norms of the CDFs computed from the A2h distributions.

Because there are 2K view-dependent pointclouds asso-
ciated with each model Mi, the system matches the query
S with each such pointcloud Sk(Mi) (k = 1,2, ...,2K) and
records the best matching score. In the end, the system re-
turns the top 25 matches across the models inM.

4.3. Volumetric Comparison

We create density voxels from the merged scan S and com-
pare it against the density voxels of the candidate matches of
the database models. The density voxels of database models
are calculated during the pre-processing stage. Specifically,
the bounding box of Mi is discretized into uniform voxel
grids and the density of points that falls within the voxel
location is calculated. The resolution of the voxel is cho-
sen considering the trade-off between the accuracy and the
speed. In our tests, we used a 9×9×9 voxel grid.

The merged scan S and the retrieved model Mi can be

Figure 6: Retrieval results with simulated data using a lamp
data set. Given the model in the first column, the database of
1805 models are matched using the A2h descriptor, and the
top 5 matches are shown.

aligned as follows: the system first aligns the centroid of the
simulated scan Sk(Mi) to match the centroid of S (note that
we do not force the model Mi to touch the ground), while
scaling model Mi to match the height of data. To fix the re-
maining 1DOF rotational ambiguity, the angle space is dis-
cretized into 10◦ intervals, and total 36 density voxels are
created for a given scan S. The system compares the volume
density between S and Mi in terms of the cross correlation of
the density voxels and picks the angle for which the rotated
model best matches the scan S. In practice, we found this
refinement step necessary since our view-dependent scans
have coarse angular resolution (K = 6).

Finally, the system uses the positioned proxy model Mi to
assess the quality of the current scan and provide guidance,
as described in Section 3.1.

5. Evaluation

We tested the robustness of the proposed A2h descriptor on
synthetically generated data against available groundtruth.
Further, we let novice users use our system to scan differ-
ent indoor environments. The real-time guidance allowed the
users to effectively capture the indoor scenes (see supple-
mentary video).

Table 1: Database and scan statistics.

dataset # models average # points/scan
chair 2138 45068
couch 1765 129310
lamp 1805 11600
table 5239 61649

c© 2013 The Author(s)
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Figure 7: Retrieval results with simulated data using a
couch data set. Given the model in the first column, the
database of 1765 models are matched using the A2h descrip-
tor, and the top 5 matches are shown.

Model database. We considered four categories of objects
(i.e., chairs, couches, lamps, tables) in our implementation.
For each category, we downloaded a large number of mod-
els from the Trimble 3D Warehouse (see Table 1) to act as
proxy geometry in the online scanning phase. The models
were pre-scaled and moved to the origin. We synthetically
scanned each such model from 12 different viewpoints and
computed the A2h descriptor for each such scan. Note that
we placed the camera only above the objects (latitudes of
π/6 and π/3) as the input scans rarely capture the under-
side of the objects. We used the Kinect scanner to gather
streaming data and used an open source library [EEH∗11] to
accumulate the input data to produce merged scans.

Retrieval results with simulated data. The proposed A2h
descriptor is effective in retrieving similar shapes in frac-
tions of seconds. Figure 5, 7, 6, and 8 show typical retrieval
results. In our tests, we found the retrieval results to be use-
ful for chairs and couches, which have a wider variation of
angles compared to lamps or tables, the shape of which is
almost always very symmetric.

Effect of viewpoints. The scanned data often have signif-
icant parts missing, mainly due to self-occlusion. We sim-
ulated this effect on the A2h descriptor-based retrieval by
comparing the performance of the retrieval using 2K = 12
scans separately against retrieval with merged all 2K scans,
Figure 9. We found the retrieval results to be robust and the
models sufficiently representative to be used as proxies for
subsequent model assessment.

Comparison with other descriptors. We also tested exist-
ing shape descriptors: silhouette-based light field descrip-
tor [CTSO03], local spin image [Joh97], and the D2 descrip-
tor [OFCD02]. In all the cases, we found our A2h descrip-

Figure 8: Retrieval results with simulated data using a table
data set. Given the model in the first column, the database of
5239 models are matched using the A2h descriptor, and the
top 5 matches are shown.

tor to be more effective in quickly resolving local geometric
changes, particularly for low quality partial pointclouds. In
contrast, we found the light field descriptor to be more sus-
ceptible to noise and cannot be easily applied to the partial

Query object 

View-dependent 

Merged scan 

View-dependent 

Merged scan 

View-dependent 

Merged scan 

Query object 

Query object 

Figure 9: Comparison between retrieval with view-
dependant and merged scans. The models are sorted by
matching scores, with lower scores denoting better matches.
The leftmost images show the query model. Note that the
view-dependent scan-based retrieval are robust even with
significant missing regions (∼30-50%).

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and John Wiley & Sons Ltd



Kim, Mitra, Huang, Guibas / Guided Real-Time Scanning of Indoor Objects

pointcloud data. Local spin image was more expensive to
compute to achieve the real-time performance. The D2 de-
scriptor was less able to distinguish between local variations
than our A2h descriptor. We show sample retrieval results in
Figure 4.

We next evaluated the degradation in the retrieval results
under perturbations in sampling density and noise.

Effect of density. During scanning, points are sampled uni-
formly on the sensor grid, instead of uniformly on the model
surface. This uniform sampling on the sensor grid results in
varying densities of scanned points depending on the view-
point. Our system compensates for this effect by assigning
probabilities that are inversely proportional to the density of
sample points.

Figure 10: Effect of density-aware sampling on two differ-
ent combination of views (comb1 and comb2). The sampling
that considers the density of points are comb1d and comb2d,
respectively.

Figure 10 shows the effect of density compensation on
the histogram distributions. We tested two different combi-
nation of viewpoints and compared the distributions, using
sampling based on uniform distribution or inversely propor-
tional to the density. Density-aware sampling are indicated
by dotted lines. The overall shapes of the graphs are simi-
lar for uniform and density-aware samplings. However, the
absolute values on the peaks are observed at similar heights
while using density-aware sampling. Hence, our system uses
density-aware sampling to achieve robustness to sampling
variations.

Effect of noise. In Figure 11, we show the robustness of
A2h histograms under noise. Generally, the histograms be-
come smoother under increasing noise as subtle orientation
variations get masked. For reference, the Kinect measure-
ments from a distance range of 1-2m have noise perturba-
tions comparable to 0.005 noise in the simulated data. We
added synthetic Gaussian noise on the simulated data to cal-
culate the A2h descriptors to better simulate the shape of the
histogram.

Retrieval results with real data. Figure 13 shows retrieval
results on a range of objects (i.e., chairs, couches, lamps,
and tables). Overall we found the guided interface to work
well in practice. The performance was better for chairs and
couches, while for lamps and tables, the thin and symmetric

Figure 11: Effect of noise. The shape of histogram becomes
smoother as the level of noise increases.

structures led to some failure cases. In all cases, the system
successfully handled missing data as high as 40-60% of the
object surface (or half of the object surface invisible) and
the response of the system was at interactive rates. Note that
for testing purposes we manually pruned the input database
models to leave out models (if any) that looked very sim-
ilar to the target objects to be scanned. Please refer to the
supplementary video for the system in action.

Comparison. There is no prior work that exactly does real-
time retrieval as we propose. We performed limited compar-
ison with the segmented scans provided by [NXS12], which
segments real scans and matches a limited number of objects
from database. The overall goal is different because we are
retrieving models for individual objects in real-time, while
the work by [NXS12] interprets a scene with multiple ob-
jects. However, both approaches share the process of match-
ing segments of pointcloud with a database of objects. For
the particular process, our approach has the benefit of having
a larger size of database and quick retrieval results. We are
using thousands of models in real-time while the approach
by [NXS12] used only 8 chairs and 8 desks. According to
their paper, the query time for randomized decision forest
taking a fraction of second, but entire deformation and align-

Input [NXS12] Ours Input [NXS12] Ours 

Figure 12: Comparison with [NXS12].
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Figure 13: Real-time retrieval results on various datasets. For each set, we show the image of the object being scanned, the
accumulated pointcloud, and the closest shape retrieved model, along with the 5 out of the top 25 candidates that are picked
from the database of thousands of models using the proposed A2h descriptor.

ing the object takes 10 seconds. On the other hand, our re-
trieval takes less than a second to compare against thousands
of models given the merged scan. (From the supplementary
video, you can see that the entire retrieval can take a few
seconds, but it is actually performed for every frame added
to the scan.) Figure 12 shows some sample matched models
provided by their pipeline and ours. Also we can possibly in-
corporate user feedback for the objects with severe occlusion
to get a better reconstruction result.

6. Conclusions

We presented a real-time guided scanning setup for on-
line quality assessment of streaming RGBD data obtained
while acquiring indoor environments. The proposed ap-
proach is motivated by three key observations: (i) indoor
scenes largely consist of a few different types of objects,
each of which can be reasonably approximated by com-
monly available 3D model sets; (ii) data is often missed

due to self-occlusions, and hence such missing regions can
be predicted by comparisons against synthetically scanned
database models from multiple view-points; and (iii) stream-
ing scan data can be robustly and effectively compared
against simulated scans by a direct comparison of the distri-
bution of relative local orientations in the two types of scans.
The best retrieved model is then used as a proxy to evaluate
the quality of the current scan and guide subsequent acquisi-
tion frames. We have demonstrated the real-time system on
a large number of synthetic and real-world examples with a
database of 3D models, often ranging in a few thousands.

In the future, we would like to extend our guided system to
create online reconstructions while specifically focusing on
generating semantically valid scene models. Using context
information in the form of structural cues [MWZ∗13] can
prove to be effective.
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