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Figure 1: Given a geometric model of a mechanical assembly, we analyze it to infer how the individual parts move and interact with each
other. The relations and motion parameters are encoded as a time-varying interaction graph. Once the driver is indicated by the user, we
compute the motion of the assembly and use it to generate an annotated illustration to depict how the assembly works. We also produce a
corresponding causal chain sequence to help the viewer better mentally animate the motion.

Abstract movement. For example, the gearbox in a car is a collection of

How things workvisualizations use a variety of visual techniques to  Interlocking gears with different ratios that transforms rotational
depict the operation of complex mechanical assemblies. We presenforce from the engine into the appropriate revolution speed for
an automated approach for generating such visualizations. Startingin® Wheels. Understanding how the parts interact to transform the
with a 3D CAD model of an assembly, we rst infer the motions of driving force into motion is often the key to understanding how
individual parts and the interactions between parts based on theirechanical assemblies work.
geometry and a few user speci ed constraints. We then use this
information to generate visualizations that incorporate motion ar- There are two types of information that are crucial for understand-
rows, frame sequences and animation to convey the causal chairing this transformation process: 1) the spatial con guration of parts
of motions and mechanical interactions between parts. We presentwithin the assembly and 2) the causal chain of motions and mechan-
results for a wide variety of assemblies. ical interactions between parts. While most technical illustrations
effectively convey spatial relationships, only a much smaller subset
Keywords: mechanical assembly, motion depiction, visualization, Of these visualizations are designed to emphasize how parts move
shape analysis, causal chaining and interact with one another. Analyzing this subsét@f things
workillustrations and prior cognitive psychology research on how
. people understand mechanical motions suggests several visual tech-
1 Introduction nigues for conveying the movement and interactions of parts within
...all machines that use mechanical parts are built with the a mechanical assembly:
same single aim: to ensure that exactly the right amount of
force produces just the right amount of movement precisely ~ Motion arrowsindicate how individual parts move.
where it is needed.

(David MacaulayThe New Way Things Wok998)) Frame sequenceshow key snapshots of complex motions and
Mechanical assemblies are collections of interconnected parts sucthighlight the sequence of interactions along the causal chain.
as gears, cams and levers that move in conjunction to achieve a
speci ¢ functional goal. As Macaulay points out, attaining this goal
usually requires the assembly to transform a driving force into

(a) Gears with motion arrows (b) Cam frame sequence
Image credits: David MacaulayThe New Way Things Wdi998]

Figure 2: Hand designed illustrations. These examples show how
motion arrows (a) and sequences of frames (b) can help convey
the motion and interactions of parts within mechanical assemblies.
¢ Houghton Mif in Company.



Animations are sometimes used to show the dynamic behavior of data, video and motion capture, assume that the data itself is time-
an assembly. varying. A key feature of our approach is that it does not require
such a representation of the motion as part of the input. Instead we
analyze a purely geometric representation of a mechanical assem-
bly to extract the relevant kinematic motions of its parts.

Creating effective how things work illustrations and animations by
hand is dif cult because a designer must understand how a com-
plex assembly works and also have the skill to apply the appropri-
ate visual techniques for emphasizing the motions and interactionsResearchers have also developed a variety of techniques for inter-
between parts. As a result, well-designed illustrations and anima-preting and animating 2D sketches of complex physical systems,
tions are relatively uncommon, and the few examples that do exist including mechanical devices, analog circuits, chemical structures.
(e.g., in popular educational books and learning aids for mechanical See Davis [2007] for a survey of these techniques.

engineers) are infrequently updated or revised. Furthermore, most

illustrations are static and thus do not allow the viewer to inspect an Shape Analysis. Early research efforts at Felix Klein's celebrated
assembly from multiple viewpoints. Erlanger Program [1893] and later by Thompson [1917] established
v\}he importance of geometry to the study of form and structure. The
ideal goal is to extract high level shape semantics and relations be-
tween the various parts of shapes by working with their geometric
descriptions alone. For general shapes, this remains a dif cult, and
often an unrealistic task.

In this paper, we present an automated approach for generating ho
things work visualizations of mechanical assemblies from 3D CAD
models. Our approach facilitates the creation of static illustrations
and animations from any user-speci ed viewpoint. We address two
main challenges:

] ] ) ] However, signi cant progress has been made in the case of engi-
Motion and interaction analysis. Most 3D models do not spec-  neered objects. Such objects are designed and manufactured us-
ify how their parts move or interact with each other. Yet, this in- ing well established processes and often share distinctive prop-
formation is essential for creating visualizations that convey how erties. Researchers in the CAD/CAM community have long ex-
the assembly works. We present a semi-automatic technique thatpjored such characteristics to facilitate reconstruction, segmenta-
determines the motions of parts and their causal relationships base ion and denoising of Shapes for reverse engineering [Benko et al.
on their geometry. With a small amount of user assistance, our ap-2001; Demarsin et al. 2007]. In addition, man-made objects are

proach can successfully analyze a wide range of CAD models.

Automatic visualization. We present algorithms that use the mo-
tion and interaction information from our analysis to automatically

well suited for a variety of shape analysis techniques including
slippage-analysis [Gelfand and Guibas 2004], symmetry detec-
tion [Mitra et al. 2006], up-right positioning [Fu et al. 2008], ab-
straction [Mehra et al. 2009], and structural feasibility [Whiting

generate a vgriety 'of how_ things work visualizations, includi_ng et al. 2009]. Recently, Xu et al. [2009] employed slippage analysis
static illustrations with motion arrows, frame sequences that high- ;4 segment and categorize joints in man-made models, and used
light key snapshots and the causal chain of mechanical interactionsihe information for interactive volumetric-cell-based space defor-
as well as simple animations of the assembly in motion. Figure 1 mation. Concurrently, Gal et al. [2009] demonstrated that working
shows examples of static illustrations generated automatically usingyith 4 set of 1D feature curves extracted from engineered objects,
our system. Figure 2 shows similar hand-designed illustrations that ang preserving their intra- and inter-relations while deforming the
incorporate motion arrows and frame sequences. shapes lead to an intuitive manipulation framework. This research

The contributions of our work include 1) a set of design guidelines suggests that some of the characteristic properties of man-made
for generating motion arrows and frame sequences that effectively Shapes may be closely related to their geometry. In this work, we
convey the causal chain of motions and mechanical interactions Make use of recent advances in geometric shape analysis to infer
between parts, 2) an analysis technique that extracts the relevanfelevant attributes of individual parts and their mutual relations for
motion and interaction information from an input 3D model, and 3) typical mechanical assemblies. We propose a light weight shape

automated visualization algorithms that apply our design guidelines analysis system that uses a small set of assumptions and user spec-
based on the results of the analysis. i cations to automatically infer the motion of such assemblies.

Mechanical Animation. Although most CAD models do not in-
clude information about how their parts move and interact, a few
commercial CAD packages provide tools that help users create me-
chanical animations in order to evaluate functional aspects of an
) ) o o o . assembly design (e.gSolidWorks Motion, Solid Edge Motion Sim-
llustrating Motion.  Depicting motion in a still image is a chal-  yjation). However, most of these tools still require the user to man-
lenging task that requires mapping changes in time to locations in ya|ly specify information for all (or many) of the assembly parts,
image space. lllustrators and artists use a variety of cues to de4ncluding motion parameters and interaction constraints between
pict motion, including sequences of key poses, stroboscopic effectsthe parts. In contrast, our approach infers such information directly
motion blur, af ne shear (or forward lean), action lines, and ar- from geometry with far less user assistance. Furthermore, even after
rows [McCloud 1993; Cutting 2002]. Researchers have developed motion parameters have been speci ed, existing CAD tools do not

algorithms for adding such motion cues to computer-generated an-gytomatically produce the types lobw things workvisualizations
imations of 2D and 3D geometric scenes [Masuch et al. 1999; that are the focus of our work.

Kawagishi et al. 2003; Nienhaus and Déllner 2005], time-varying

volumetric data [Joshi and Rheingans 2005], video [Collomosse o . . L

et al. 2005; Kim and Essa 2005; Dony et al. 2005; Goldman et al. 3 Designing How Things Work Visualizations

2006] and skeletal motion capture data [Assa et al. 2005; Bouvier-

Zappa et al. 2007]. All these techniques assume that the input datallustrators and engineers have produced a variety of

directly contains some representation of the motions that must bebooks [Amerongen 1967; Macaulay 1998; Langone 1999; Brain

visualized. For example, Nienhaus and Dollner [2005] illustrate 2001] and websites (e.g. howstuffworks.com) that are designed
the motion of 3D animations, based on an analysis of specializedto show how complex mechanical assemblies work. These illus-
scene graphs that encode the structure and motion of the animatedrations use a number of diagrammatic conventions to highlight

scene. Similarly the techniques designed to illustrate volumetric the motions and mechanical interactions of parts in the assembly.

2 Related Work

Our work builds on three main areas of related work.



Cognitive psychologists have studied how static and multimedia (\

visualizations help people mentally represent and understand the lL w4

function of mechanical assemblies [Mayer 2001]. For example, | T} -
[ ¢

Narayanan and Hegarty [1998; 2002] propose a cognitive model

for comprehension of mechanical assemblies from diagrammatic cam axle crank belt lever
visualizations that involves 1) constructing a spatial representation & =Ub
of the assembly and then 2) constructing a model of the causal S, ' & - - {:‘\
chain of motions and interactions between the parts. They also " % i v
suggest a set of high_|eve| design guide”nes for creatiog/ variable speed gear helical gear rack-pinion bevel gear worm gear

things workvisualizations that facilitate these two steps. Figure 3: Typical joints and gear con gurations encountered in

Researchers in computer graphics have concentrated on re ningmechanical assemblies, and handled in our system. While most
and implementing many of the design guidelines aimed at assistingtypes we can automatically detect and handle, we require the user
the rst step of the comprehension process. Algorithms for creat- to mark some parts, for example a lever (see accompanying video).
ing exploded views [McGuf n et al. 2003; Bruckner and Groller

2006; Li et al. 2008], cutaways [Seligmann and Feiner 1991; Li the steps of the causal chain improve comprehension compared to
et al. 2007; Burns and Finkelstein 2008] and ghosted views [Feiner animations that do not include such cues [Hegarty et al. 2003; Kriz

and Seligmann 1992; Viola et al. 2004] of complex objects apply and Hegarty 2007].

illustrative conventions to emphasize the spatial locations of the

parts with respect to one another. Since our focus in this work is Highlight important key frames of motions. The motions of

on depicting motions and mechanical interactions between parts,most parts in mechanical assemblies are periodic. However, in some
we concentrate the following discussion on visual techniques that of these motions, the angular or linear velocity of a part may change

facilitate the second step of the comprehension process. during a single period. For example, the pistons in the assembly
shown in Figure 12 move up and down the cylinder during a single
Helping Viewers Construct the Causal Chain period of motion. To depict such complex motions, static illustra-

tions sometimes include key frames that show the con guration of
In an in uential treatise examining how people predict the behavior parts at the critical instances in time when the angular or linear ve-
of mechanical assemblies from static visualizations, Hegarty [1992] locity of a part changes. Inserting one additional key frame between
found that people reason in a step-by-step manner, starting fromeach pair of critical instances can help clarify how the parts move
an initial driver part and tracing forward through each subsequent from one critical instance to the next.
part along a causal chain of interactions. At each step, people infer
how the relevant parts move with respect to one another and then .
determine the subsequent action(s) in the causal chain. Even thougrf1r System Overview
all parts may be moving at once in real-world operation of the as-
sembly, people mentally animate the motions of parts one at a timeWe present an automated system for generating how things work
in causal order. visualizations that incorporate the visual techniques described in
the previous section. The input to our system is a polygonal model
of a mechanical assembly that has been partitioned into individual
parts. Our system deletes hanging edges and vertices as necessary to

P —— make each part 2-manifold. We assume that touching parts are mod-
static visualizations, Tversky et al. [2002] found no bene t for an- b 9p

e S eled correctly, with no self-intersections beyond a small tolerance.
imation. Our work does not seek to engage in this debate between 4 y

ati imated illustrati Instead im t b thAs a rst step, we perform an automated motion and interaction
Static versus animated Illustrations. instead we aim to SUpport both 5 4y 5js of the model geometry to determine the relevant motion
types of visualizations with our tools. We consider both static and

imated visualizati . vsis of desi ideli parameters of each part, as well as the causal chain of interactions
animated visualizations in our analysis ot design guidelines. between parts. This step requires the user to specify the driver part
Effective how things work illustrations use a number of visual tech- for the assembly and the direction in which the driver moves. Using

Although animation might seem like a natural approach for visu-
alizing mechanical motions, in a meta-analysis of previous studies
comparing animations to informationally equivalent sequences of

niques to help viewers mentally animate an assembly. the results of the analysis, our system allows users to generate a
variety of static and animated visualizations of the input assembly
Use arrows to indicate motions of parts. Many illustrations in- from any viewpoint. The next two sections present our analysis and

clude arrows that indicate how each part in the assembly moves.visualization algorithms in detail.

In addition to conveying the motion of individual parts, such ar-

rows can also help viewers understand the speci c functional rela- . . .

tionships between parts [Hegarty 2000; Heiser and Tversky 2006].2 Motion and Interaction Analysis

Placing the arrows near contact points between parts that interact

along the causal chain can help viewers better understand the causalhe analysis phase computes the type of each part and how the parts

relationships. move and interact with each other within the assembly. We encode
this information as arnteraction graph(see Figure 4) in which

Highlight causal chain step-by-step. In both static and animated  nodes represent parts, and edges represent mechanical interactions

illustrations, highlighting each step in the causal chain of actions between touching parts. Each node stores parameters that de ne the

helps viewers mentally animate the assembly by explicitly indicat- type (e.g. axle, gear, rack, etc.) and motion attributes (e.g., axis of

ing the sequence of interactions between parts. Static illustrationsrotation or translation, range of possible motion) of the correspond-

often depict the causal chain using a sequence of key frames thating part. We use shape and symmetry information to infer both the

correspond to the sequence of steps in the chain. Each key framepart type and part motion directly from the 3D model. Each edge in

highlights the transfer of movement between a set of touching parts,the graph is also typed to indicate the kind of mechanical interaction

typically by rendering those parts in a different style from the rest of between the relevant parts. Our system handles all of the common

the assembly. In the context of animated visualizations researchergoint and gear con gurations shown in Figure 3, including cam and

have shown that adding signaling cues that sequentially highlight crank mechanisms, axles, belts, and a variety of gear interactions.
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segmems\! . ‘

loop extraction

analyzed assembly parts interaction graph Figure 5: Parts are segmented using edges with high dihedral an-

Figure 4: (Left) Parts of an assembly with automatically detected gles across adjacent faces to form sharp edge loops.

axes of rotation or symmetry, and (right) the corresponding inter- . . . . ) )
action graph. Graph edges encode the types of joints. which are present in certain parts like variable-speed gears (see Fig-
ure 3). For rotationally symmetric parts, we obtain their rotational

axisa and teeth count based on the order of their symmetry. Simi-
larly, for parts with discrete translational symmetry, we obtain their
movement direction and teeth width, e.g., for a gear rack; while
for helical parts we compute the axis directiaalong with the pitch

of the screw motion.

To construct the interaction graph, we rely on two high-level in-
sights: 1) the motions of many mechanical parts are related to their
geometric properties, including self-similarity, symmetry; 2) the
different types of joint and gear con gurations are often charac-
terized by the speci ¢ spatial relationships and geometric attributes
of the relevant parts. Based on these insights, we propose a two- o

stage process for constructing the interaction graph. First, in the Sharp edge loops. Parts with insigni cant symmetry often pro-
part ana|y5|$tage, we examine each part and Compute a set of Can_y|de |mp0rtant constraints for the Other paI’tS, faC|I|.tat|ng or restrict-
didate rotation and translation axes based on the self-similarity and'ng_thelr movements. Even for (_partlally) symmetric parts we must
symmetry of the part. We also compute key geometric attributes, in- €stimate attrllbutes like gear rqdlus, range of motion, etc. We extract
cluding radius, type of side pro le (cylindrical, conical), pitch, teeth ~ Such properties by working with sharp edge loops or creases, that
count, as applicable. Complex parts are segmented into simpler sub@re¢ common 1D feature curves characterizing machine parts (see
parts, each with its associated radius, side pro le type, etc. Then, in also [Gal et al. 2009]).

the interaction analysisstage, we analyze the axes and attributes
of each pair of touching parts and classify the type of joint or gear
con guration between those parts. Based on this classi cation, we
create the interaction graph nodes, store any relevant motion param
eters, and link touching parts with the appropriate type of edge.

We employ a simple strategy to extract sharp edge loops from
polygonal models of mechanical parts. First all the edges with dihe-
dral angle between adjacent faces exceeding thregh @ in our
implementation), are marked sisarp Then starting from a random
seed triangle as a segment, we greedily gather neighboring triangles
into the segment using a ood Il algorithm, while making sure not
5.1 PartAnalysis to cross any sharp edge. We repeat this segmentation process until
all triangles have been partitioned into segments separated by sharp
For each part, we estimate its (potential) axes, along with attributes edges. Segments with only few sharp edges (less than 10 in our
like side pro le, radius, teeth count, and pitch as applicable. Based experiments) are discarded as insigni cant. Boundary loops of the
on these attributes we classify the type of the part. In Section 5.2, remaining segments are used as sharp edge feature loops for the
we explain how we use these attributes to determine how motion is remaining analysis (see Figure 5). Note that an edge can belong
transmitted across parts in contact with one another. In this interac-to up to two loops. This simple loop extraction procedure is suf -
tion analysis phase we also use the motion information to re ne our cient to handle clean input geometry of mechanical parts with sharp
classi cation of the part type. features like in CAD models. However, for parts with few sharp
edges, boundaries of proxy segments computed using variational
Assumptions. Inferring inter-relations between parts and their shape approximation can be used as feature loops [Cohen-Steiner
motion directly from the geometry of a static con guration of a et al. 2004; Mehra et al. 2009].
mechanical assembly can be ambiguous. However, making simple )
assumptions about the assembly allows us to semi-automatically rigNext we t least squares (parts of) circles to the sharp edge loops
up its motion. We assume that parts usually rotate about a symmetry@nd based on the residual error we identify circular loops. For each
or dominant axis, translate along translational symmetry directions, circle loopl;, besides its centes; and radius;, we also obtain its
or engage in screw motion along a helical axis, as applicable. Un-(canonical) axis directiom; as the normal to its containing plane.
symmetric parts are assumed to remain xed. Such parts typically J
constitute the support structures of mechanical assemblies. Levers
belts and chains have few dominating geometric characteristics.
Thus, we expect the user to identify such parts. Our system au-

tomatically identi es all the other part types shown in Figure 3. 2 o

\
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>

Symmetry detection. Most machine parts are regularly struc-
tured and we use symmetry analysis to identify translational or
rotational axes of such parts as well as their degrees of freedom.

b

A partP is said to be symmetric if it remains invariant under some r T
transformationT;, i.e., Tj(P) = P. For mechanical assemblies we . )
are only interested in the family of rigid transformatidrigg, i.e., Figure 6: (Left) Circles tted to sharp edge feature loops of a part.

translations, rotations, and their combinations. We use a simpli ed (Middle) The circles are rst grouped based on their axes. Clusters

variant of Hough transform based voting scheme [Mitra et al. 2006] I this space denote parallel axes, which are in turn grouped based
to look for translational and rotational symmetries, while ignor- O their (projected) centers. (Right) Detected axes are rated based

ing re ective ones. The algorithm also handles partial symmetries, ©" the corresponding cluster size (denoted by axis thickness).
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Figure 7: A time-varying interaction graph. (Top) Graph edges for the rack-and-pinion con guration are active at different times during

the motion cycle. (Bottom) We use a space-time construction to nd the time interval for each edge. When the contact surfaces separate or

self-intersect, we identify end of a cycle. We show the space-time surface analysis for the top-left con guration.

For each part, all its estimated circle loddgy are clustered to ex-
tract its potential axes of rotation. First we group lodpg with
similar axis direction, i.e., we cluster the aXegg in the line space

as members (see Figure 8). Finally, we t least squares cylinders
and cones to the side regions, using the rotational axis and respec-
tive loop radius to initialize the non-linear tting. Detected cylinder

parameterized by their altitude-azimuthal angles. For each detectedor conical side pro les are later used to classify joint types, e.g.,
group, we further partition its elements based on the projection of cylinder-on-plane, cone-on-cone (bevel), etc.

their centers in a direction along the cluster representative axis, cho
sen as the centroid of the cluster in the line space. We use a radiu

of 5 degrees for clustering axes.

\We obtain the remaining relevant part attributes from the sharp edge

ﬁoops. Their radii give us estimates for inner and outer radii of parts.

For parts with cylindrical, conical, or helical regions, we count the

This simple grouping scheme works well because mechanical mod-intersection of the sharp edge loops with respect to their tted cir-
els are largely designed from canonical geometrical primitives, and cles to get the teeth count (see Figure 8). To rule out outlier parts
have their underlying axes of the circle loops well aligned. We con- like rectangular bars, we consider rotationally symmetric parts to
sider the clustered directions to be potential axes of a part, if their be gears if they exhibit-fold symmetry withn > 4.

cluster sizes are signi cant. We rank the directions based on the
number of elements in their corresponding clusters (see Figure 6)
These axes directions, both for moving or static parts, often contain
important alignment cues for neighboring parts, e.g., as potential
shaft locations for axles.

Finally, for levers, chains and belts, which are essentially 1D struc-
‘tures, we use local principal component analysis to determine the
dominant direction for the part.

5.2
Cylindrical or conical parts have similar rotational symmetry and

similar sharp edge loop clusters. To differentiate between them we 1q pyild the interaction graph and estimate its parameters, we pro-
consider their (approximate) side pro les. We partition rotationally ceed in three steps: we compute the topology of the interaction

Interaction Analysis

symmetric parts int@ap andsideregions. Leta; denote the rota-
tional axis of par®. Each face; 2 R is classi ed as a cap face if its
normaln; is such thafn; aj 1, otherwise it is marked as a side

graph based on the contact relationships between parts; we then
classify the type of interaction at each edge (i.e., the type of joint or
gear con guration); nally, we compute the motion of each part in

face. We then build connected components of faces with the samethe assembly.

labels, and discard components that have only few triangle faces

fitted cone
cap segment

side segment

fitted cylinder _ ]

fitted circle

Figure 8: Sharp edge loops are tted with circles, and regular loops
identi ed. The dominant part axis is used to partition the part into
cap- and side-regions, which are then tested for cylindrical or cone
ts for determining region types.

Contact detection. We use the contact relationships between
parts to determine the topology of the interaction graph. Follow-
ing the approach of Agrawala et al. [2003], we consider each pair
of parts in the assembly and compute the closest distance between
them. If this distance is less than a threshaldwe consider the
parts to be in contact, and we add an edge between their corre-
sponding nodes in the interaction graph. Wesstd be 01% of the
diagonal of the assembly bounding box in our experiments.

As assemblies move, their contact relationships evolve. Eedges

in the interaction graph may appear or disappear over time. To
compute the evolution of the interaction graph we establish contact
relations using a space-time construction. Suppose atttirtveo
partsP, and P; are in contact and we have identi ed their joint-
type (see later). Based on the joint-type we estimate their relative



on-line, rack-and-pinion, worm gear, bevel gear, helical gear. For
cylinder-on-plane, one part is cylindrical with radius matching the
distance between the cylinder axis and the plane. For cylinder-on-
line, e.g., belts, pulley ropes, the principal direction of the 1D part
is tangent to the cylinder. For a worm gear, one part is helical and
the other cylindrical. If both parts are conical with their cone angles
summing up to 90 degrees, we mark a bevel gear. When one part
exhibits rotational symmetry, and the other translational symmetry,
and their teeth width match, we ag a rack-and-pinion arrangement.

AN e

free fixed fixed configuration Our junction classi cation rules are carefully chosen and designed

) based on standard mechanical assemblies and can successfully cat-
Figure 9: Planetary gear arrangement. The same arrangement of egorize most joints automatically, as found in our extensive exper-
mechanical parts can have largely different motion depending on jmentation. However, our system also allows the user to intervene
the chosen driver and the part constraints. The blue gear can be anq rectify misclassi cations, as shown in the supplementary video.
free (left), or can be marked to be xed (right).

free configuration

. . . ~ Compute motion. Mechanical assemblies are brought to life by
motion parameters and compute their positions at subsequent timesyy external force applied to a driver and propagated to other parts
t+ Dt + 20, etc. We stack the surfaces in 4D using time as the according to junction types and part attributes. In our system, once
fourth dimension and connect corresponding points across adjacenthe yser indicates the driver, motion is transferred to the other con-
time slices. nected parts through a breadth- rst graph traversal of the interaction

Often, due to symmetry considerations, it is suf cient to work with  9raphG, starting with the driver-node as the root. We employ sim-
2D cross sectional curves of parts and construct the space-time surPl€ forward-kinematics to compute relative speed at any node based
face in 3D (see Figure 7). By extracting contact relations between " the joint type with its parent [Davidson and Hunt 2004]. For
the space-time surfaces (as an instance of local shape matching), w&*@mple, for a cylinder-on-cylinder joint, if motion from a cylinder
infer the time interva[t;t + nDt] when the part® andP, remain W|th radiusr; and an_gular velocity; is transmltte_d to another with

in contact, and hence the connect@nsurvives. The same method ~ radiusre, then the imparted angular velocity, is wiry=r. Our
applies when the contact remains valid, but the junction parameters@PProach handles graphs with loops (e.g., planetary gears). Since
change, e.g., variable speed gear (see Figure 3). In this case, th¥/€ assume our input models are consistent assemblies, even when
space time surfaces become separated or start to intersect, as th@ultiple paths exist between a root node and another node, the nal
junction parameter changes. Afterwards, we look for new contacts motion of the node does not depend on the graph traversal path.
at the new event time, and continue building the graph. Note, we When we have an additional constraint at a node, e.g., a node is
implicitly assume that the junction part contacts and parameters Xd or restricted to translate only along an axis, we perform a con-
change discretely over the motion cycle allowing us to perform such Strained optimization to nd a solution. For example in Figure 9-
an event based estimation. Hence we cannot handle continuouslyight, when the green partis the driver, and the blue partis xed, the
evolving junctions that may occur for parts like elliptic gears. As- intermediate nodes.rotate both.about thelr.lnd|V|duaI axes gnd also
suming that the relative speeds between parts of an assembly ar@Pout the green cylinder to satisfy constraints on both their edges.
reasonable, we used a xed samplidg= 0:1sec with the default Since we assume that the input assembly is a valid one and does not

speed for the driver part set to angular velocity of .1 radian/sec, or Self-penetrate during its motion cycle, we do not perform any col-
translational velocity of 0.1 unit/sec, as applicable. lision detection in our system. If the detected motion is wrong, the

user can intervene and correct misclassi cations. Such intervention

Interaction classi cation. Having established the connectivity of ~Was rarely needed for the large set of assemblies we tried.
the graph, we now determine the relevant attributes for each edge

(i.e., we classify the corresponding junction and esti.mate .the mo-g  Vjsualization

tion parameters for the relevant parts). We categorize a junction
between node® andP;, using their relative spatial arrangement
and the individual part attributes. Speci cally, we classify junctions
based on the relation between the part axgsnd a;, and then
check if the part attributes agree at the junctions. For parts with
multiple potential axes, we consider all pairs of axes.

Parallel axes: When the axes are nearly parallel, ijes, a;j 1,

the junction can be cylinder-on-cylinder (e.g. yellow and green ) )

gears in Figure 9), or cylinder-in-cylinder type (e.g. yellow and 6-1 Computing Motion Arrows

blue gears in Figure 9). For the former+ r, (roughly) equals

the distance between the axes, e.g., spur gears, helical gear; whild-or static illustrations, our system automatically computes arrows
for the latterjr;  rpj (roughly) equals the distance between the fromthe user-speci ed viewpoint. We support three types of arrows
axes, e.g., inner ring gears, (belong to) planetary gears. Note for(see Figure 10)cap arrows, side arrowsandtranslational arrows
cylinder-on-cylinder, the cylinders can rotate about their individual Our algorithm for generating these arrows consists of three steps: 1)
axes, while simultaneously one cylinder can rotate about the otherdetermine how many arrows of each type to add, 2) compute initial
one, e.g., (subpart of) planetary con guration (see Figure 9). arrow placements, and 3) re ne arrow placements to improve their
Coaxial: As a special case of parallel axes, when both the axes areISIPIlity.

also contained by a single line, the junction is marked coaxial. This For each (non-coaxial) edge in the interaction graph, based on the
junction type is commonly encountered in wheels, cams, cranks, junction type, we create two arrows, one associated with each node
axles, etc. connected by the graph edge. We refer to such arrows as contact-
Orthogonal axes: When the axes are nearly orthogonal, i.e., based arrows, as they highlight contact relations. We add contact
ay a 0, the junction can be a cylinder-on-plane, cylinder- arrows using the following rules:

Using the computed interaction graph, our system automatically
generates how things work visualizations based on the design
guidelines discussed in Section 3. Here, we present algorithms for
computing arrows, highlighting both the causal chain and important
key frames of motion, and generating exploded views.



cylinder-on-cylinder joints:we add cap arrows on both parts;

cylinder-in-cylinder joints: we add a cap arrow for the part inside
and a side arrow for the one outside;

cylinder-on-plane joints:we add a cap arrow on the cylinder and a
translational arrow for the translational part;

bevel gears:we add side arrows on both (conical) parts;

worm-gear: we add a cap arrow on the cylinder and a side arrow
on the helical part.

Note that these rules do not add arrows for certain junction types
(e.g., coaxial joints). Thus, after applying the rules, we add a non-
contact arrow to any part that does not already have an associated
contact arrow. For example, we place a side arrow around a coaxial
joint. Furthermore, if a cylindrical part is long, a single arrow may
not be suf cient to effectively convey the movement of the part. In
this case we add an additional non-contact side arrow to the part.
Thus, a part may have multiple arrows assigned to it.

Having decided how many arrows to add and their part associa-
tions, we compute their initial positions as follows. During the part
analysis, we partitioned each part into cap and side segments (see |
Section 5). Using the z-buffer, we identify the cap and side face
segments with the largest visible areas under self-occlusion and
also under occlusion due to other parts. These segments serve as
candidate locations for arrow placement; we place side arrows at
the middle of the side segment with maximal score (computed as
a combination of visibility and length of the side segment) and cap
arrows right above the cap segment with maximal visibility. For
contact-based side and cap arrows, we move the arrow within the
chosen segment as close as possible to the corresponding contact
point. Non-contact translational arrows are placed midway along
the translational axis with arrow heads facing the viewer. The local
coordinate frame of the arrows are determined based on the direc-
tional attributes of the corresponding parts, while the arrow widths Figure 11: Motion arrow results. To convey how parts move,
are set to a default value. The remaining parameters of the arrowsour system automatically computes motion arrows from the user-
(d; r; g in Figure 10) are derived in proportion to the part parameters speci ed viewpoint. Here, we manually speci ed the lever in the
like its axis, radius, side/cap segment area. We position non-contacthammer model (a) and the belt in the chain driver model (c); our
side arrows such that the viewer sees the arrow head face-on. system automatically identi es the types of all the other parts.

Hammer

Our initial arrow placement algorithm puts each arrow on a max-

imally visible cap or side segment. However, we can still improve . ; . ;
y b g P arrows viewed at oblique angles can be dif cult to interpret. In such

arrow visibility by optimizing arrow placement within each seg- . ;
ment. For cap arrows, we allow freedom to increase or decrease theCases (angles greater than 70 degrees in our system), we switch cap

radius for placement; while for side arrows we allow the freedom to 2/70WS 0 side arrows, and locally adjust their parameters for better
translate along and rotate about the part axis. Optimization proceedsv's'b'“ty'

greedily, simultaneously exploring both directions, by taking small

steps proportional to respective arrow thickness. We terminate thee.2 Highlighting the Causal Chain

process when the arrow head is fully visible and the visibility of the

arrow crosses a prescribed threshold (50% in our examples). Cap

z

. max. cap segment
translational P seg

y\\ arrow ) d\\
contact-base
\g_-'==$‘ X

arrows \\

cap arrow

side arrow

max. side segment

~ = non-contact

arrows - -

before arrow optimization

To emphasize the causal chain of actions, our system generates a
sequence of frames that highlights the propagation of motions and
interactions from the driver throughout the rest of the assembly.
Starting from the root of the interaction graph, we perform a breadth
rst traversal. At each traversal step, we compute a set of n&des
that includes the frontier of newly visited nodes, as well as any
previously visited nodes that are in contact with this frontier. We
then generate a frame that highligl®by rendering all other parts

in a desaturated manner. To emphasize the motion of highlighted
parts, each frame includes any non-contact arrow whose parent part
is highlighted, as well as any contact-based arrow whose two as-
sociated parts are both highlighted. If a highlighted part only has

Figure 10: (Left) Translational, cap and side arrows. Arrows aré  contact arrows and none of them are included based on this rule,
rst added based on the interaction graph edges, and then to the \ye aqdd the part's longest contact arrow to the frame to ensure that
moving parts without (suf cient) arrow assignment. The initial ar- - eyery highlighted part has at least one arrow. In addition, arrows as-
row placement can suffer from occlusion (rightinset), whichis xed  sqciated with previously visited parts are rendered in a desaturated
using a re nement step (center). manner. For animated visualizations, we allow the user to interac-
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Figure 12: Keyframes for depicting periodic motion of a piston-engine. Because of symmetry across parts and across motion (periodic),
snapshot times are decided based on the positional extremes of the piston tops.
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tively step through the causal chain while the animation plays; at a variety of sources; for details, please refer to the Acknowledge-
each step, we highlight parts and arrows as described above. ments section. Figures 1, 11-14 show static illustrations of all ten
models. Other than specifying the driver part and its direction of
motion, no additional user assistance was required to compute the
interaction graph for seven of the models. For the drum, hammer

. . . . . nd chain driver models, we manuall i lever, cam an
As explained in Section 3, some assemblies contain parts that move® d chain driver models, we manually specied lever, cam and

. e : .+ chain parts, respectively. In all of our results, we color the driver
in complex ways (e.g., the direction of motion changes periodi- )
cally). Thus, static illustrations often include key frames that help blue, xed parts dark grey, and all other parts light grey. We render

clarify such motions. We automatically compute key frames of mo- translation arrows in green, and side and cap arrows in red.

tion by examining each translational part in the model; if the part

changes direction, we add key frames at the critical times when Our results demonstrate how the visual techniques described in Sec-
the part is at its extremal positions. However, since the instanta-tion 3 help convey the causal chain of motions and interactions
neous direction of motion for a part is unde ned exactly at these that characterize the operation of mechanical assemblies. For ex-
critical times, we canonically freeze tim# after the critical time ample, the arrows in Figure 14a not only indicate the direction
instances to determine which direction the part is moving in (see of rotation for each gear, their placement near contact points also
Figure 12). Additionally, for each part, we also add middle frames emphasizes the interactions between parts. The frame sequence in
between extrema-based keyframes to help the viewer easily estabFigure 14b shows how the assembly transforms the rotation of the
lish correspondence between moving parts (see FO5 model exampledriving handle through a variety of gear con gurations, while the

in the accompanying video). However, if such frames already exist sequence in Figure 14c conveys both the causal chain of interactions
as extrema-based keyframes of other parts, we do not add the addifframes 1-3) as well as the back-and-forth motion of the horizontal
tional frames, e.g., in the piston-engine example (see Figure 12). rack (frames 3-6) as it engages alternately with the two circular

. . gears. Finally, our animated results (see video) show how sequential
Our system can also generate a single frame sequence that high=

lights both the causal chain and important key frames of motion. As

we traverse the interaction graph to construct the causal chain frame

sequence, we check whether any newly highlighted part exhibits

complex motion. If so, we insert key frames to convey the motion

of the part and then continue traversing the graph (see Figure 14c). -~

6.3 Highlighting Important Key Frames of Motion

6.4 Exploded views

In some cases, occlusions between parts in the assembly make it Planetas)gearbox
dif cult to see motion arrows and internal parts. To reduce occlu- w/ xed outer rings

sions, our system generates exploded views that separate portions

of the assembly (see Figure 13). Typical exploded views separate all

touching parts from one another to ensure that each part is visually

isolated. However, using this approach in how things work illustra-

tions can make it dif cult for viewers to see which parts interact

and how they move in relation to each other. 4

To address this problem, we only separate parts that are connected
via a coaxial junction; since such parts move rigidly together (i.e.,
they rotate in the same direction around the same axis), we believe it
is easier for viewers to understand their relative motion even when (b)

they are separated from each other. To implement this approach, our Planetary gearbox
system rst analyzes the interaction graph and cuts coaxial edges. wifree outer fings
The connected components of the resulting graph correspond to

sub-assemblies that can be separated from each other. We use the

technique of Li et al. [2008] to compute explosion directions and

distances for these sub-assemblies.

Figure 13: Exploded view results. Our system automatically gener-
7 Results ates exploded views that separate the assembly at co-axial junctions
to reduce occlusions. These two illustrations show two different

We used our system to generate both static and animated how thing&©n gurations for the planetary gearbox: one with xed outer rings

work visualizations for ten different input models, each of which (8), and one with free outer rings (b). The driver part is shown in
contains from 7 to 27 parts (see Table 1). The models come from Plue, and xed parts are shown in dark grey.



highlighting of parts along the causal chain can help convey how Kuang and Ruihua Ye for creating the Macaulay gear model. The
motions and interactions propagate from the driver throughout the hand-drill and chain-driver models are obtained from the Google
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chain driver 61k 15 116 11/1/- 1.96 14 0.93
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Figure 14: lllustration results. We used our system to generate thesethings workillustrations from 3D input models. For each model, we

speci ed the driver part and its direction of motion. In addition, we manually speci ed the levers in the drum (c). From this input, our system
automatically computes the motions and interactions of all assembly parts and generates motion arrows and frame sequences. We created
the zoomed-in insets by hand.



