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Abstract

Urban facades regularly contain interesting variations due to allowed deformations of repeated elements (e.g.,
windows in different open or close positions) posing challenges to state-of-the-art facade analysis algorithms.
We propose a semi-automatic framework to recover both repetition patterns of the elements and their individual
deformation parameters to produce a factored facade representation. Such a representation enables a range of
applications including interactive facade images, improved multi-view stereo reconstruction, facade-level change
detection, and novel image editing possibilities.

1. Introduction

Building facades are integral to most urban environments,
both real-world and virtual. Such facades are often created
with repeated elements (e.g., windows) placed in regular
(e.g., along 2D grids) or semi-regular arrangements. How-
ever, facades get modified over time as window elements are
opened or closed, secondary elements like curtains, flower
plots are added, etc. Such geometric variations can lead to
large appearance changes, often effectively obscuring the
underlying simplicity of the facades.

In recent years, significant progress has been made to-
wards simplified and accurate acquisition of facades, either
using image-based methods or directly using 3D scanning
setups (e.g., LiDAR scans). Such raw data can then be an-
alyzed to reveal underlying repetition patterns facilitating
compact storage, non-local data completion, or inverse pro-
cedural modeling (see recent surveys [MPWC12,MWA∗12]
and references therein). These methods, however, are de-
signed to detect (near) identical repeated facade elements
arranged on regular grids and can fail in scenes with struc-
tured variations like varying blind positions on windows or
semi-regular grids (see Figure 1).

In this work, starting from any single facade image,
we propose a semi-automatic framework to jointly extract
element-level repetitions while factoring out allowed varia-
tions (e.g., opening or closing of windows) to obtain a de-
composition that brings the facade elements to a canonical
configuration essentially extracting a factored representa-

Figure 1: Analysis of facade images is often complicated by
variations of repeated elements (e.g., windows) from canoni-
cal configurations. For example (top), state-of-the-art facade
analysis [TKS∗11] can fail due to element variations, while
our algorithm (bottom) correctly extracts both the underly-
ing repetition pattern and the individual blind positions.
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Figure 2: Starting from a single rectified facade image with a single marked window (in orange), we solve for regularity
maximizing repetition structure (red circles show local estimates of window locations before global coupling) while recovering
the individual deformation parameters of the repeated window elements. The resultant factorization enables novel synthesis
possibilities while preserving extracted facade-syntax.

tion. Additionally, the decomposition provides valuable in-
formation about the allowed variation modes, which can then
be used towards new editing and synthesis possibilities. Our
key observation is that element segmentation, repetition (and
structure) detection, and solving for the individual element
configurations when performed jointly lead to increased ac-
curacy and robustness. Although a full joint optimization is
complex, in presence of simple user hints (e.g., marked rect-
angle in Figure 1-bottom-left) and simple priors about how
windows can typically be manipulated (e.g., windows can
slide up/down, window shutters can open outwards), we pro-
pose an iterative solution. Beyond new analysis possibilities
leading to significantly compact facade encodings (typically
5-10x compression ratio), the factored representation (see
Figure 10) reveals the functional workings of the facades
and allows facade-syntax preserving manipulations leading
to interactive facade images. (Note that the proposed anal-
ysis and synthesis have implicit cultural assumptions about
window types and styles.)

We demonstrate our framework on a range of synthetic
and real-world images with varying amount of element vari-
ations and clutter and use the extracted factored representa-
tions to make the input facades interactive. We demonstrate
novel synthesis and manipulation possibilities, both on the
input images and on synthesized geometries, towards the
goal of meaningful facade manipulations (see supplemen-
tary video and interactive facade viewer demo).

In summary, our main contributions are: (i) introduc-
ing factored facade representation to specifically encode
window-level low degree of freedom movements; (ii) ex-
tracting such encodings from input facade images; and
(iii) using the encodings to enable a range of novel inter-
action to bring static (single) facade images to life.

2. Related Work

We focus only on the works most relevant to our problem,
while referring the readers to the recent survey [VAW∗10]
for a detailed exposition on facade and urban modeling.

Image-based modeling. Debevec et al. [DTM96] in their
seminal paper propose an interactive image-based model-
ing technique to exploit characteristics of architectural ob-
jects coupling an image-based stereo algorithm with manu-

ally specified 3D model constraints. Subsequently, structure-
from-motion (SfM) has been used to recover urban facades
from unorganized photo collections (see [SSS06, FCSS09]
and references therein) using photogrammetric reconstruc-
tion and image-based modeling techniques. Such systems
produce massive collections of low-level unorganized tex-
tured points, which are not suited for low-memory footprint
navigation or mobile interactions (e.g., Google Streetview).
Furthermore, the methods rely on image-space similarity,
which are often lost as window element configurations are
changed, or repetition patterns are semi-regular.

Procedural modeling. Wonka et al. [WWSR03] use split
grammars and an attribute matching system to synthesize
buildings with varying styles. Later, researchers have ex-
plored auto-correlation based analysis of rectified images
combined with shape grammars towards urban reconstruc-
tion [MZWG07]. The approach proposes an interesting mix
of user interaction and image analysis for rule-based pro-
cedural modeling. Since these methods only support lo-
cal operations, recently Musialski et al. [MWW12] propose
a coherence-based interactive system to support non-local
coupling. The method, however, fails in presence of allowed
variations across similar elements, as is our focus. Note that
the extracted factored facade representations obtained using
our system can directly be used to produce accurate 3D ge-
ometries, which can then be procedurally edited and refined.

3D geometry synthesis. Multiple data sources (e.g., pho-
tographs, LiDAR scans, aerial images, GIS data) have been
combined to improve the quality of 3D models [FJZ05,
LZS∗11]. Alternately, working with incomplete LiDAR
scans, Zheng et al. [ZSW∗10] use model scale repetitions
to create a consolidated point cloud. Although the resultant
point clouds have high resolution, the algorithms rely on
multiple sources, have moderate to high memory foot-prints,
and are not directly suited for creating realistic model vari-
ations. Ceylan et al. [CML∗12] propose a 2D-3D coupled
optimization using symmetric line arrangements towards ac-
curate 3D reconstructions. However, they heavily rely on the
presence of near symmetry across repeated elements, an as-
sumption commonly violated in our inputs.

Facade annotations. Our work is inspired by recent facade
analysis efforts of Teboul et al. [TSKP10] who perform su-
pervised learning using shape grammar priors to interpret
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building facades using random walks on the learned models.
The method has been extended using recursive binary split
grammar and reinforcement learning [TKS∗11] to parse fa-
cades into element level masks (e.g., windows, doors) using
training information. Wu et al. [WWF∗10] analyze the trans-
lational grid patterns in the images to enable image resiz-
ing by manipulating the semantic grid cells. None of these
efforts, however, explicitly account for intrinsic variations
across elements (see Figure 1). In a related attempt, Alsisan
et al. [AM12] swap window elements to maximize image-
space repetitions and hence reduce memory footprint to-
wards abstraction and efficient transmission. They, however,
do not handle allowable deformations and hence inherit the
typical problems of other regularity detection approaches.

3. Overview

Our goal is to decouple repetitions (regular or semi-regular)
from element-level variations in the context of facade im-
ages. Figure 2 gives an overview of our algorithm. Start-
ing from single input facade images, in the analysis phase,
we extract repeated facade elements (i.e., windows) along
with their variations. While image-space variations among
repeated elements arise from a range of factors (e.g., geomet-
ric variations of windows being open/closed; customization
due to the addition of flower pots, blinds; appearance vari-
ations due to shadow, reflection, etc.), in this work we pri-
marily focus on extracting the geometric variations, which
are necessary to enable realistic synthesis. We make two key
observations: (i) errors in the local analysis for repetition de-
tection can be rectified using a non-local repetition maximiz-
ing optimization, and (ii) having simple deformation priors
for 3D window elements leads to robust extraction of the cor-
responding deformation parameters. The user marks a sin-
gle window element and our proposed framework extracts
the repetition pattern, per window deformation parameters,
and corresponding structured image completion results for
the window elements (see Section 4). Subsequently, we use
the extracted factored representation to enable facade-syntax
preserving interaction and synthesis possibilities.

4. Facade Analysis

In this section, we describe the facade analysis phase
wherein the goal is to detect regular and semi-regular pat-
tern(s), extract the repeated elements, and per-element de-
formation parameters.

Preprocessing. We first rectify the input image using van-
ishing lines. On the rectified image, say I, we extract Canny
edges and discard the small edges (using a fixed threshold
of 2% of element size). Note that at this local-analysis stage,
edges arise from window frames, room interiors, blind fea-
tures, facade textures, etc.

4.1. Facade Structure Analysis

State-of-the-art facade regularity detection methods assume
the repetition elements to be similar. However, in our tar-
get examples, image-level repetition is often lost due to per
element variations (e.g., opening/closing of blinds). This re-
sults in various forms of errors in automatic regularity detec-
tion (see Figure 3). Instead, we allow the user to mark one
single element of interest Ws (implicitly identifying scale of
interest) while the analysis framework recovers a repetition
maximizing regularity, as described next.

Figure 3: State-of-the-art algorithms (e.g., [WFP11]) de-
signed to detect facade regularities often fail due to vary-
ing configurations of the repeated elements: regular grids
may get split into multiple grids; detected repetitions may
have offset ambiguity; or only small partial grids may be
detected. In our interactive framework, we expect the user
to indicate one window, while our framework extracts the
(semi-regular) repetition pattern for window locations.

Repetition detection. We use the selected dominant win-
dow mask Ws as a reference to search and extract a large set
of candidate repeated elements from the rectified facade im-
age. We search using a combined intensity and edge consis-
tency scores as line features are typical in building facades.
Both terms, however, can lead to spurious entries: in case of
shadow or different interior elements (e.g., flower pots, cur-
tains), intensity similarity produces errors; while inconsis-
tent edges and varying window element configurations lead
to spurious edge similarity. We later recover from such errors
using a non-locally coupled extraction (see Figure 4).

We compute the intensity score wintensity using the Nor-
malized Cross Correlation (NCC) [BH01] as it is resilient to
intensity variations due to lighting and shadow fluctuations.

We compute the edge score for a candidate patch Wt based
on the matches with the edges from the user provided tem-
plate Ws. We mark a pair of line segments (li, l j) such that
li ∈Ws, l j ∈Wt to be matching (i.e., match(li, l j) = 1) if their
directions agree within a±20◦ margin AND the distance be-
tween the midpoints of the line segments is smaller than a
threshold δ (10% of element size in our implementation).
We define the total edge score as the sum of such matches:

wedge := ∑
li∈Ws,l j∈Wt

match(li, l j)/|Ws||Wt |. (1)

Note that since we ignore the small edges in the edge extrac-
tion step, we did not find it necessary to weigh the scores by
the edge lengths, but only normalized by the edge counts.
Finally, we define the combined score as: wt(Ws,Wt) :=

c© 2013 The Author(s)
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Figure 4: Extracted repetition grid in (rectified) facade images under varying regularity, occlusion, and difficult illumination
conditions. In each example, the user prescribed one template rectangle Ws (top-left windows in each example). Subsequently,
blind/shutter positions (not shown here) are extracted as explained in Section 4.2.

wintensity(Ws,Wt)+λwedge(Ws,Wt), with λ = 0.5 in our tests.
Note that while the user can adjust λ to assign different
preference for the intensity versus edge terms, we kept the
weights fixed in our tests.

Having defined an error metric to compare template Ws
with image patches Wt , we find candidate matching image
patches. As common on urban facades, we assume most win-
dows to be horizontally or vertically aligned. We first sweep
along a vertical line from the template and for each point
on the line we extract the locations where Ws locally have
maximal similarity (using a 3-5 pixel margin). Effectively,
we extract the local maxima in the correlation profile along
the horizontal direction. In the vertical sweep, we suppress
similar solutions to keep only local maxima solutions (see
also [MZWG07]). For robustness and efficiency, we use a
3-level Gaussian image pyramid for searching. Thus, we ob-
tain a set of candidate 2D locations for the marked template
Ws, each with a confidence score based on the similarity val-
ues. However, the candidate solutions can overlap and are
not yet non-locally coupled (see Figure 5).

Repetition structure optimization. Due to occlusions and
illumination variations, we detect wrong suggestions in the
candidate locations. We use an optimization to prune such
wrong ones and extract the (near-) regular structure of the
facade (see [ACM12] for another use of repetition maximiz-
ing optimization). Essentially, we look for consistent split-
ting lines, although the resultant grid need not be fully oc-
cupied. Note that we allow irregularly-spaced partially-filled
grid of window elements, unlike other methods that solve for
full 2-parameter grids [PMW∗08]. Due to the nature of the
problem, we independently solve for the x and y splits. Note
that we implicitly assume the windows to be semi-regularly
arranged.

Let the set of candidate locations be denoted by P :=
{p1, . . . pn} with their associated confidence weights W :=
{w1, . . .wn}. Note that these denote the candidate points pro-
jected to x or y direction (since we solve for each direc-
tion independently). Our goal is to select a subset of k splits
that best explains the current observations, while maximiz-
ing regularity. Let, S be such a candidate set that contains k
points, i.e., the original template position Ws and k−1 other
points from P. A set of points is considered to be valid only

if the stencils at the corresponding positions do not overlap.
We use simulated annealing to optimize for a good split, i.e.,
we start with a random assignment S consisting of k points
from P and keep the valid solution with the best fitting en-
ergy, which we define next.

In order to measure the fitness of a valid set, we compute
its energy as a combination of a data term and a non-local

Figure 5: (Top-left) Starting from an input (rectified) image
and an element proxy Ws (shown in green), we extract im-
age edges (top-right) and identify potential matches using a
combined NCC and edge similarity score (bottom-left). Sub-
sequently, we select a subset of matches in a repetition maxi-
mizing optimization (bottom-right). Note that we also handle
semi-regularly arranged elements (see also Figure 6).
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regularity term as follows:

min
S

E(S) := Edata(S)+λEreg(S) (2)

where λ determines the relative contributions among the data
and regularity terms (λ = 0.3 in our tests). We now describe
the two terms.

Data term (Edata): This term measures the confidence with
which a set S covers the candidate set of points P as:

Edata(S) :=
k

∑
i=1

1/(wi ·gi) (3)

where, wi denotes ws(qi,Ws) and gi measures how well the
point qi ∈ S agrees with the other points p j ∈P using a Gaus-
sian falloff as:

gi(Si) := ∑
p j∈P

exp(−‖qi− p j‖2/2σ
2) (4)

where σ represents the width or height of the template Ws
depending on the dimension of the optimization.

Regularity term (Ereg): A typical facade has a near-uniform
distribution of distances among its neighboring windows.
Therefore, we introduce this term to measure the regularity
of the points qi among the set S. We find the spacing dis-
tribution among qi ∈ S as {d1,d2,d3, ...,dk−1} after sorting
them by x (or y) values. Then, we measure the regularity by
computing the regularity of the selection as follows:

Ereg(S) :=
k−1

∑
i=1

(di−µ)2 +
k−2

∑
i=1

(di+1−di)
2, (5)

where µ denotes the average spacing. Note that the first term
captures deviation from mean separation, while the second
term penalizes variations in neighboring deviations.

In order to find the splitting lines that specify the grid
containing the windows, we minimize the energy given
in Equation 2 using a simulated annealing based sam-
pling (SA) [KGV83]. We start with E ←∞. Then, in the
SA step, we accept the new solution with energy E(S) if
Enew ≤ E(S); else we accept the new solution with proba-
bility of exp(−(Enew−E(S))/t), where t is the temperature;
else we reject the new layout and retain the old one. If we
accept a solution, we set E ← Enew. In the annealing sched-
ule, we reduce temperature t and continue with the iterations.
We stop if either the maximum number of steps (50-100 in
our tests) has been reached, or when E < threshold. (Note
that, more advanced stochastic optimization strategies like
reversible jump MCMC can also be used, but we did not
find it necessary.) Starting from k = n we solve for decreas-
ing values of k and keep the first local minima for E(S)/k.
This identifies a set S? whose points specify the positions
of the splitting lines, solved for x and y independently. We
mark each such grid location as active if we have a pi ∈ P
located nearby. Figures 4 and 6 show results under varying
grid spacing, different occlusion, and challenging illumina-
tion conditions.

Figure 6: Our facade structure analysis can also detect
semi-regular structures. Note that in each case one element
of each type was marked by the user.

Selecting elements. Having extracted the dominant vertical
and horizontal split lines, we finally mark the grid locations
that are active (i.e., have a matching element) based on the
scores computed previously as wt(Ws,Wt). Specifically, we
mark any the grid locations as active if it has a matching
score larger than 50% of maxWt wt(Ws,Wt) (see Figure 6-
right).

4.2. Facade Element Analysis

In this section, we analyze each repeated element, i.e., a sin-
gle window, to recover its deformation parameter. We make
the following observations about windows that typically
have low degrees of freedom: (i) windows (blinds) slide to
open vertically or horizontally, i.e., the changes are approx-
imately on the facade plane and hence can be analyzed di-
rectly on the rectified images (see Section 4.2.1); or (ii) win-
dows (shutters) rotate to open, and hence need to be analyzed
using some rough 3D information and back projected on the
image to verify the solution (see Section 4.2.2). Note that
in cultural settings where these observations are not satis-
fied, then our analysis method can fail. Further, windows can
broadly be classified as opaque (e.g. blinds, wooden shut-
ters) or transparent (e.g., glass on a wooden/metal frame).
In the case of opaque elements, the opaque segments (e.g.,
blinds) share similarity across repetitions; while the rest
of the windows (i.e., open elements) share little similarity
across the repetition structure since they represent interiors
of different rooms. Based on these observations, we now de-
scribe how we extract the window deformation parameters
either automatically, or based on user hints (e.g., roughly
marking a frame of a glass window).

4.2.1. Sliding window analysis

Each window can have its independent configuration of
blind. We explain how we extract up/down sliding, while
left/right sliding can be treated similarly. Such window con-
figurations can simply be encoded as t that determines the
status of the blind: t = 0 denotes open window, t = 1 de-
notes closed window, and t ∈ (0,1) denotes partial cover.

c© 2013 The Author(s)
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input blinds edges vertical segs. binary class. blind params.

Figure 7: Stages of sliding window parameter estima-
tion. Starting from window images (first column), we per-
form Canny edge detection to extract dominant horizontal
edges (second column) to vertically divide the windows into
top and bottom segments (third column). We then look across
the extracted top (and bottom) segments across multiple win-
dows to determine consistent blind (and interior) colors and
use them to reclassify regions for each window (fourth col-
umn). Finally, we use the information to extract the respec-
tive blind parameter for each window (last column) as a sin-
gle parameter t ∈ [0,1] capturing the extent to which the cor-
responding window is open. Here, we show analysis results
for top-down sliding window types.

For opaque blinds, t is the ratio between the area of the blind
and the area of the window (see Figures 7 and 8).

Window blind area estimation. We start by detecting edges
on each window element using Canny edge detector and enu-
merating the number of edge pixels per row of the image.
Then, we mark a set of candidate horizontal splitting lines
by picking the rows where the number of pixels are locally
maximum. We use non-maximal suppression (using 3 pix-
els) to remove nearby candidates. These splitting lines divide
one window into several vertically aligned sub-regions. For
each sub-region, we compute its average color and use it to
fill in the sub-region. Finally, we obtain a mask image of the
vertical segmentation for each window.

In the mask image, each splitting line is associated with
two colors, say top color ctop and bottom color cbottom. Sup-
pose ctop is the blind color and cbottom is the window color,
we compute a sum of fitness values over all windows and se-

t=0.1 t=0.35 t=0.5 t=1.0 t=0.7

Figure 8: Based on repeated windows of the same type
but different estimated deformation/opening parameters, we
synthesize a new window position by appropriately treating
the background (i.e., window specific layer) and the blind,
which is repeated across the windows. In case of sliding
transparent (e.g., glass) window frames, we expect the user
to roughly indicate a mask for the frame.

lect the pair of colors with best fitness for the blind color and
window color, respectively. We compute the fitness value for
one mask as follows: for all possible splitting lines, find the
line where the average color of the upper part of the win-
dow is as close to the top color and also the bottom part is
as close to the bottom color, the lowest difference is used
as the fitness value. Essentially, our approach exploits that:
variance in colors across opaque blinds among the repeated
elements is low compared to variation of colors across the
open parts (i.e., interiors), which is distinctive for the differ-
ent windows.

Based on the extracted blind color cb and interior color
ci estimates, we classify each pixel with color cp as blind if
|cb− cp| ≤ |ci− cp|, else as interior. The classification re-
sults in a binary image where black denotes blind and white
denotes interior. Finally, we determine the parameter t by
finding the horizontal splitting line where the sum of black
pixels above and white pixels below reach the maxima (see
Figures 7 and 8).

4.2.2. Window shutter analysis

In this case, let the dihedral (rotation) angle be θ between
one shutter and the background window frame, then half of
the window is fully covered (i.e., closed) if θ = 0, fully ex-
posed if θ = π, and partly shaded if θ ∈ (0,π). Here we use
θl and θr to denote the rotation angles for the left and the
right windows, respectively (facing the facade plane).

Window shutter estimation. Since the shutter rotations are
off the facade plane, we assume access to rough 3D informa-
tion. We obtain such rough 3D data using the method pro-
posed by Wu et al. [WFP11]. Although a full grid detection
using this method can fail due to different element positions,
a coarse geometry is often sufficient to roughly estimate the
3D facade plane. (However, if even the rough estimation
fails then the user has to intervene.) We use RANSAC-based
plane fitting to extract the dominant plane from the rough 3D
pointset. We then lift the extracted 2D grid obtained in the fa-
cade image analysis to get initial window placements in 3D.
We estimate the size of the window and its two shutters in
world coordinates and abstract its shape as three rectangles
(in 3D), two rectangles for the window shutters and one for
the window frame, by projecting the user labeled window
onto the facade plane. The abstracted window is denoted
as W (3)

a . Note that we assume that the user labeled a fully
opened window as the reference window Ws. For each of
the detected repetitive window Wt , we perform a line-search
(in the space of angles) based 2D-3D matching to find the
corresponding θl and θr (see [CML∗12] for joint 2D-3D op-
timization).

First, we translate W (3)
a so that its center is aligned with

that of the Wt ’s 3D counterpart. Then, we rotate the left shut-
ter by an angle θ̂ and apply the projective transformation
from 3D→2D image. The 3D rectangle representing the left
shutter will be mapped to a quad region R on the image.

c© 2013 The Author(s)
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Figure 9: Starting from an input image (top-left), we de-
tect the repetition windows along with their rotation pa-
rameters (top-right). We can then synthetically replace the
window textures (bottom-right) and subsequently virtually
change window rotation parameters (bottom-left).

Suppose the average color ofR is cR and the average color
of the left shutter in Ws is cWs , the matching score is defined
as area(R)/(|cR− cWs |+ 1). We also use an edge similar-
ity between the image edges and the projected 3D window
frame edges. We simply perform a line search over θ and re-
tain the angle with maximal matching score. Figure 9 shows
typical detection results with such rotating windows.

Again, in the case of window frames with transparent
glass, we allow the user to manually specify a frame-mask
using rough strokes. This mark is then used as a template to
search and solve for sliding parameters or rotation angles as
appropriate. In such cases, the edge similarity is given higher
weight over color matching.

Iterative refinement. After detecting the window param-
eters, we synthetically bring all the windows to an arbi-
trary but canonical position (see Section 5), once again per-
form facade structure analysis, and iterate. We typically per-
form 2-3 iterations in our tests. Although the refinements are
small, the process does help to improve the estimates of the
element positions and their configurations (see Figure 2).

5. Factored Facades

We now describe how we use the extracted repetition pattern
and window configurations to plausibly fill in missing infor-
mation in background layers, eventually leading to a factored
facade representation.

Blind synthesis. We use the set of window elements Ii with
the corresponding blind parameters ti to synthesize new win-
dows with arbitrary blind configurations (see Figure 8). The
synthesis involves two tasks: filling in the missing regions
for the background and filling in the missing regions for the
windows (if they are in partially open positions). We note
that while the window backgrounds typically capture build-

ing interiors and differ even among repeated windows; the
windows (i.e., blinds) are repeated and missing regions for
one window can be filled in using information from other
repeated (more) closed windows. Intuitively, since we know
the opening parameters of the repeated windows, we implic-
itly have correspondence information across them. We ex-
ploit this implicit correspondence to solve a graph-cut based
formulation for image completion and consolidation using
information across the repeated window blinds.

We first move each of the window elements Ii to the closed
position by appropriately moving (i.e., translating) the de-
tected blind from position ti to t′i = 1. Note that we keep
track of the empty regions using masks, i.e., for closing a
window from ti we have a mask region spanning 1− ti from
the top (for a blind lowered down). Now, to perform image
completion for window Ii, we use missing regions from the
corresponding parts, if available, from the other images I j
for j 6= i while minimizing seam lines with the current blind
region. We use a standard multi-label graph formulation to
perform this image synthesis [ADA∗04].

Shutter synthesis. In this stage, we have a sampling of
(repeated) window texture for a discrete set of angles, i.e.,
θ1,θ2, . . . with the goal to synthesize textures for intermedi-
ate values. Since we have a simple proxy geometry as the
window rectangle in 3D, we directly bring the adjacent win-
dows (in space of rotations) to target configuration θ and
interpolate. While more advanced view-dependent textures
can be used, we did not pursue such alternatives. In case of
frames with transparent glass, we expect the user to provide
a rough frame (using GrabCut [RKB04]).

Background layer. For each individual image element, we
first remove the front blinds, shutters, or window frames. We
used PatchMatch-based [BSFG09] image completion using
structuring guidelines, where we prefer information propa-
gation vertically since windows have a reflective symmetry.

Factored facade representation. Finally, for an input fa-
cade image, we encode the following information (see Fig-
ure 10): (i) the rectifying transform; (ii) the repetition grid
along with which of the elements are occupied; (iii) the
opening parameters for each window along with synthesized
open/closed positions; (iv) the background layer.

Figure 10: Factored facade representation extracted from an
input image. (Left-to-right) Input image, extracted repetition
pattern with the individual window positions, the synthesized
background layer, and intermediate blind positions (without
synthesized interiors) (please zoom for details).
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6. Evaluation and Applications

We evaluated our framework on a large number of images
including publicly available benchmark facade images (see
supplementary materials for a wide range of facade analy-
sis results). The results show that our framework is simple,
requires marginal user hints, and yet is effective for analy-
sis of facade syntax at a level very difficult to achieve with
previous methods. The obtained factored facade representa-
tions are useful for several applications including interactive
facade images, multi-view stereo, procedural modeling, and
facade-syntax preserving synthesis.

Interactive facade images. We have implemented a basic
user interface to interactively synthesize new facade images
based on the recovered factored facade representations (see
demo and video). The main functionalities are:

• Repetition restructuring. We allow the user to interac-
tively change the grid structure of the repetitions and re-
position a specified element. During the relocation, all the
elements in the same row/column are updated while pre-
serving alignment (see also [WWF∗10]).
• Window blind synthesis. The user can interactively change

the positioning of a window blind by dragging the bottom
edge of the blind up and down in the original facade view.
• Window shutter synthesis. The orientation of the window

shutters can be specified interactively.

Please note that although the interactive synthesis is per-
formed on 2D facade images, we utilize the underlying 3D
information. For example, when changing the shutter pa-
rameters, we rotate the shutters in 3D and then project it
back to 2D. (In the default mode, shadow effects are turned

Figure 11: Image-based 3D facade synthesis: input
image (top-left), image-based synthesized 3D facade
mesh (top-right), rendered synthesized model with different
window rotations (bottom-right), and new window geome-
tries positioned in 3D (bottom-left).

Figure 12: Starting from two input facade images with one
window marked on each (top), we extract the repetition pat-
tern of the respective windows along with their deformation
parameters (both sliding windows). We then swap the win-
dows across the two images to synthesize new facade images.
Note that drastic rescaling of the windows can produce arti-
facts due to varying frame thickness (bottom-right).

off.) Such user interaction mimicks real-world behavior and
makes the synthesis more realistic.

Procedural generation of 3D facades. We can procedurally
generate a facade model as a 3D counterpart of the input
2D facade image while taking into account the element level
deformations (see Figure 11). Other synthesis results as re-
placing the repetition elements with new elements can also
be naturally realized.

Facade-syntax preserving synthesis. We can easily create
novel facade images while preserving the facade-syntax us-
ing the extracted element parameters and synthesizing new
element variations. Figure 12 shows an example of swapping
window elements across two images.

Multi-view Stereo. Structure from motion (SfM) and multi-
view stereo (MVS) are popular techniques to reconstruct 3D
data from a series of 2D images and has been widely used
in reconstruction of building facades. The quality of the re-
constructed data, however, directly depends on the detection
of feature correspondences across the images. Compared to
wall regions which lack sufficient features, facade elements
(e.g., windows) usually contain more image/geometry level
details and are good candidates for detecting feature corre-
spondences. As a result, the variations caused by changes
in element parameters pose challenges for SfM based re-
constructions. For example when we apply the patch-based
MVS algorithm of Furukawa et al. [FP09] on synthetic
scenes with facade element variations we obtain poor results
(see Figure 13). Instead, after recovering the window defor-
mation parameters for each image, we bring the windows to
a canonical position in all the images and use them as in-
put for the MVS algorithm. We observe that the reconstruc-
tion quality is significantly better. We have used the dense
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Figure 13: (Top) We start with 10 input images of a synthetic
scene, but each window randomly positioned. We use the
known (since synthetic) camera positions to extract dense re-
construction from the images. The result is poor for the win-
dows as image-level correspondence is imperfect. Instead,
we detect repetition grids on each image, and use the rough
3D points from the previous stage to help estimate the rotat-
ing window parameters. Subsequently, we synthetically po-
sition all the windows to a canonical position (as in top-left
image) and run dense reconstruction. Not surprisingly, the
recovered 3D scene has a much improved resolution.

reconstructions for this comparison to emphasize the signifi-
cance of the improvement. We expect similar improvements
for SfM which is essential for recovering the transformations
between the images in a multi-view setting.

Implementation details and performance. We imple-
mented our algorithm using a mixture of C++ and MATLAB
code running on an Intel Xeon X5680 @ 3.33 GHz (2 pro-
cessors) 8 GB RAM and Windows 7 64-bit computer. We
use EdgeLink [Kov] for edge detection and OpenCV [Ope]
for basic image processing operations. Typically, the grid
estimation and blind parameters produce about 90% accu-
rate results while the shutter parameters estimation is around
80− 85% accurate. The facade repetition detection usually
takes 5-10 seconds with 80% of the time being devoted to
calling Matlab code; while image completion and consoli-
dation runs in a few seconds. Subsequent edits are interac-
tive (see demo).

User interactions. We support three types of user inter-
actions in our system: (i) during facade structure analysis
(Section 4.1), the user marks a single window element. In
case of facades with multiple element types, the user marks
one element for each type; (ii) during facade element anal-
ysis (Section 4.2), the user marks a frame-mask with rough
strokes only when the window frame has transparent glass;
and (iii) during interactive facade application, the user di-
rectly manipulates the factored facade representation (see
supplementary video and demo application) to synthesize
new facade images.

7. Conclusion

We presented a semi-automatic algorithm to analyze input
facade images to extract the regularity pattern among the re-
peated window elements, while also identifying the corre-
sponding window deformations (i.e., displacement param-
eters for sliding windows and angle parameters for rotat-
ing windows) to obtain a factored facade representation. We
evaluated our framework on various challenging facade im-
ages, where state-of-the-art facade analysis algorithms fail,
and demonstrated a range of novel facade manipulation pos-
sibilities, both on input images and on synthesized 3D ge-
ometry while preserving extracted facade-syntax.

Limitations. Our work has several limitations: (i) large-
scale window element variations can result in failure in the
initial repetition detection preventing the algorithm to pro-
ceed; (ii) significant light/shadow variations, or presence of
outlier elements, can also lead to failure to abstract the win-
dow variations or even miss the repetition grids; and (iii) cul-
tural differences across window types can result in failures.

In the future, we would like to investigate a more tightly
coupled repetition detection and window variation estima-
tion to address these issues. Also, the proxy geometries (in
3D) can be used towards more accurate appearance model-
ing effects under known light and camera settings (see also
[ZCC∗12]). Finally, the recovered window templates (with
allowed variations) can be used to reveal interesting image
parts, which cannot be explained by extracted window tem-
plates, leading to novel image understanding possibilities
(see Figure 14 for an initial result).
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Figure 14: Having extracted factored facades for window
elements (top), the allowed frame movements can be used
to explain and prune out edges from the original edge
maps (middle). This can potentially reveal interesting parts
not explained by the learned deformations of the windows,
for example, here we flag regions of interest (flower pots) as
unique compared to the window template (bottom).
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