


Figure 11: Repeated edits on building examples showing both discrete and continuous changes.

of {Pi} according to their relations to elements in F. (Conflicts,
if any, are resolved using the priority ordering, and ties are broken
arbitrarily.) For example, if a face f ∈ F is coplanar to g ∈ {Pi},
then lifting f in the intra-object propagation lifts g in the inter-
proxy stage to restore coplanarity. Effectively, edits affecting F
act as deformation handles to proxies in {Pi} and then we again
apply intra-object propagation to the remaining elements in {Pi}
to maintain their original shape characteristics. Note that unless
indicated by users, we do not modify proxy sizes. We then add
F ← F ∪ {Pi} and continue the propagation until there is no re-
maining proxy set to handle. Note that the process stops as soon as
all related proxies are touched once. Further, for proxy sets that are
repeated, the edits are copied over up to corresponding repetition
transforms (see Figures 10, 12, and the supplementary video).

7 Evaluation

We tested our implementation on a variety of input images. We use
OpenCV for basic image processing operations and PatchMatch for
image completion as necessary. The core implementation efforts
were in the analysis stage, which involves simultaneous optimiza-
tion over multiple variables (using Levmar). Typically, for a scene
involving 5-10 annotated objects, the optimization runs in a couple
of seconds, since we have good initialization extracted from the
individual regions (see parts 4a and 4b). The MRF optimization for
resolving occlusion and stacking, however, can take longer depend-
ing on the complexity of the scene and the size of the candidate sets.

input imageinput image
extracted proxies

+ relations
extracted proxies

+ relations

edit 1edit 1 edit 2edit 2

Figure 12: Edit propagation: When we lift the tabletop, the other
tables also are vertically scaled to maintain coplanarity, while also
retaining contact to the ground. Subsequently, objects resting, i.e.,
the placement relation, on the tables also are raised. However,
when a table is rotated, only the objects stacked on it are affected.

We achieved interactive results even with up to 100 candidates (see
the supplementary video and demo).

User assistance. Starting from (roughly) segmented images, our
system works in the automatic mode for simple scenes. For com-
plex scenes or regions with non-boxy shapes, we expect user in-
tervention. Such interactions can be categorized as: (i) adjusting
initial estimates for the cuboid corners (Figures 1, 11-left, 14, 16-
bottom), (ii) helping with identifying image lines for decomposition
(Figures 1, 7-bottom, 15-bottom-left, 14), and (iii) annotating types
of joints between proxies (see Figure 10). Note that due to our joint
optimization and MRF formulation, rough user strokes are suffi-
cient to initialize the global optimization, which then adjusts the
annotations. Even in complex examples (Figures 1 and 14), user
interaction was limited to 1-2 minutes, including GrabCut strokes
(leaving out the image browsing time).

Comparison with ground truth. We compared our manipulation
results with ground truth to evaluate the accuracy and plausibility
of the manipulated images. In Figure 13, we set up a scene with
objects of various difficulty depending on how well they can be
approximated by cuboids and on how symmetric their textures are.
When the objects are close to cuboids, we get high-quality mod-
els and shadows, which are difficult to quickly differentiate from
ground truth photographs. In the case of the skull, however, the
shadow is visibly boxy (under harsh light) even though the shape
itself follows the ground truth quite well. If we rotate the skull,
however, then the illusion quickly breaks down. Further, in the case
of semi-transparent objects, we found that although translations and
small rotations work plausibly, with moderate rotations the warped
transparent interior causes artifacts (see the sharpener in Figure 2).

Image comparison. In the above example, the original images

edit 1→ 2

edit 2→ 1

photo 2

photo 1

Figure 13: Comparing proxy-based editing of images to ground
truth manipulation in 3D. Note that the object poses and their shad-
ows are realistic with user interaction being limited to GrabCut-
based segmentation in the analysis phase and shadow correspon-
dence annotation. The skull is badly approximated by a cuboid
proxy resulting in the blocky shadow under strong light.
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Figure 14: Virtual shopping and room redesign. Starting from a single image of a room, and images collected from product catalogs, the
user can quickly visualize how the objects will look in her room. Note that objects are automatically resized based on original scene proxies,
while individual objects can be rotated, translated as desired. In this example, the user spends less than a minute to rig up the proxies.

have high pixel-level differences, i.e., the mean squared error
MSE(1, 2) = 0.17 (with color channels in the range of 0 − 1). In
contrast, MSE(1, 2 → 1) = .018 and MSE(2, 1 → 2) = .02 indi-
cating that content of the two images are very similar if we factor
out (ground) plane translations and rotations that do not affect the
scene-space relations. This hints at the possibility of a new image-
space similarity measure to factor out variations due to geometric
arrangements, closer to our semantic perception of scenes.

User interaction. Since we preserve extracted relations across
the proxies, effectively, only the useful degrees of interaction are
exposed to the user. For example, a translation is mapped to trans-
lating the selected object while preserving coplanar relations, or
(optional) handling of collisions as we move parts around, or trans-
lating a drawer results in only opening/closing the same (see the
supplementary video and demo).

User study. In order to evaluate the effectiveness of our system, we
asked users to distinguish between original images and our edit-
ing results. We prepared 13 image pairs of original image and
a corresponding editing results (see the supplementary material).
Note that the edited results were direct outputs of our system and
were not rendered offline. Further, some of the input images were
rendered scenes obtained from online scenes (e.g., in product cata-
logs). Each user was shown a random selection of 13 images, one
from each pair, and given a maximum of 5 seconds to classify the
image as real or fake. The user study comprised of 44 participants
mostly computer science graduates, with many having backgrounds
in computer graphics. On average, users recognized 63.2% real
images as real, and 44.5% fake images as fake.

In Figure 15, we compare our system with state-of-the-art image
analysis techniques. Note that the semi-automatic methods produce
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Figure 15: State-of-the-art algorithms (e.g., [Gupta et al. 2011])
assume axis-aligned objects, produce coarse proxies (insets), or
fail when assumptions are violated (e.g., on the left image). Having
access to segmentation allows us to produce tighter cuboid-proxies.

proxies that are not ideal for manipulating the objects, although they
are sufficient for inserting new synthetic 3D objects [Karsch et al.
2011]. Further, the methods are restricted to axis-aligned objects.
In our context, however, simple segmentation strokes are sufficient
to enable proxy-based segmentation. Alternately, a purely image-
based method like RepFinder [Cheng et al. 2010] is also unsuitable,
especially when the scene contains perspective distortions and oc-
clusions, or for interactions involving perspective changes.

Repeated edit. Figure 11 shows examples of repeated edits. Note
that we factor out rotations and translations across objects to detect
repetitions (see also Figures 6 and 12). We detect repetitions at the
level of the proxies, but when transferring texture information, we
verify color consistency before consolidating color/texture across
proxies. Note that the facade example is comparable to state-of-
the-art symmetry-based image resizing [Wu et al. 2010]. They
consider an image as a whole and apply insertion and removal of
repeated patterns to accommodate the resizing operator, we apply
the resizing operator directly to the image object while leaving the
other scene objects untouched. In the future, it will be interesting
to continue exploring other summarization possibilities.

Virtual shopping. Figure 1 shows a typical application of our
system. The user selects a set of images and roughly marks regions
of interest. Then, we recover cuboid-based scene abstractions for
the selected objects — note that our inputs are just images and not
3D objects. More importantly, we identify relations across the ob-
jects in each individual image (e.g., table tops are aligned to seating
areas). Now, the user can move objects across scenes — in our
framework, we restore the original relations, e.g., the table height
is adjusted, the sofas are scaled anisotropically to fit in the original
setting. Note that although the original scene has multiple light
sources, we calibrate to only one source, and hence obtain a single
directional shadow. Figure 14 shows another example. The user
can also individually edit (e.g., rotate) objects to fine tune the layout
(see the supplementary video). Note that in addition to coplanar and
parallel relations, it can be interesting to consider relative heights
between parallel surfaces, say between a chair seat and a desk. We
leave this to future efforts possibly enabling function-aware scene
understanding.

Limitations. When the input scene assumptions listed in Sec-
tion 3 are violated, different artifacts can arise. Limitations include:
(i) Failing to automatically detect good cuboid-proxies for scenes
with curved chairs or sofas, etc., or cluttered workspaces with ca-
bles, bags, or heaped objects. The user can, however, manually
adjust the estimated hexagon corners, while we jointly optimize
the extracted constraints to regularize the results (see Figure 16);
(ii) Non-boxy objects in the scenes (e.g., the teapot in Figure 11, or



bad proxy

incorrect
shadow

incorrect
corners

manually
corrected corners optimized proxies

Figure 16: Limitations. Poor proxies produce implausible shad-
ows (top); objects with soft edges and occlusions lead to bad initial
hexagon estimates, which have to be manually refined (bottom).

the skull in Figure 13) produce noticeable distortions under rotation
due to imprecise proxies. Semi-transparent objects (e.g., the pencil
sharpener in Figure 2) and their shadows can appear distorted under
rotations; (iii) Texturing artifacts arise when our symmetry-based
texture copying fails, e.g., the back of the laptop, parts of the build-
ing blocks, or artifacts on the plants in the living room scenes (see
the supplementary video); (iv) Finally, we fail to automatically infer
relations without sufficient geometric clues, e.g., drawers or hinge
joints have to be annotated (see Figure 10). Similarly, in absence of
sufficient image edges, room walls are not reconstructed.

8 Conclusion

We presented an interactive system for smart editing of images of
man-made scenes. In the analysis phase, based on user-provided
segmentations, we propose a joint optimization to simultaneously
recover camera calibration, generate cuboid-based proxies, and ex-
tract their non-local relations. We show that although the cuboids
provide only a partial abstraction of the scene, they are sufficient to
decompose the image into a background layer and textured proxies
linked via non-local relations. In the interaction phase, the repre-
sentation can then be used towards smart image editing mimicking
real-world experiences.

In the future, we plan to explore the following directions: (i) A
natural continuation is to jointly estimate geometry and appearance
parameters in order to obtain quality scene understanding. Ini-
tial leads are provided by the recent work of Karsch et al. [2011]
who demonstrate that convincing appearance modeling is possible
with synthetic 3D object insertion. (ii) Although simple scene-
level changes can result in large errors in image-level similarity
measurements, such images often have very similar proxy-based
representations (see Figure 13), thus providing new image compar-
ison possibilities. One challenge, however, is how to automatically
segment the images into meaningful regions. (iii) Although we fo-
cused on cuboid-proxies, other proxies like spheres, cylinders, and
cones can possibly be incorporated. Further research is needed to
evaluate the merits of such a generalization. (iv) Finally, in the con-
text of 3D models, co-location priors have been shown to greatly
simplify content retrieval and scene modeling tasks [Fisher et al.
2011]. We plan to investigate the use of such priors directly in the
context of images using proxy-based representations, while making
use of associated image level segmentation and keywords. Another
interesting direction to pursue is how to automatically animate im-
ages of mechanical assemblies [Mitra et al. 2010].
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