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Abstract. Automatic detection of symmetries, regularity, and repetitive struc-
tures in 3D geometry is a fundamental problem in shape analysis and pattern
recognition with applications in computer vision and graphics. Especially chal-
lenging is to detect intrinsic regularity, where the repetitions are on an intrinsic
grid, without any apparent Euclidean pattern to describe the shape, but rising
out of (near) isometric deformation of the underlying surface. In this paper, we
employ multidimensional scaling to reduce the problem of intrinsic structure de-
tection to a simpler problem of 2D grid detection. Potential 2D grids are then
identified using an autocorrelation analysis, refined using local fitting, validated,
and finally projected back to the spatial domain. We test the detection algorithm
on a variety of scanned plaster models in presence of imperfections like missing
data, noise and outliers. We also present a range of applications including scan
completion, shape editing, super-resolution, and structural correspondence.

1 Introduction

Symmetries and regular structures are ubiquitous in nature and in man-made objects,
often being closely related to form, function, aesthetics, and manufacturing ease of
geometrically complex but procedurally simple shapes. While humans are extremely
skilled at perceiving and identifying such patterns, even under a cursory inspection [1],
automatic detection of such regularity remains challenging. One of the main difficulties
is the fact that neither the parts that are being repeated nor their repetition pattern is
known a priori. Additionally, the surfaces are often warped in practice, making pattern
detection challenging (see Figure 1). Such distortions have been widely studied in com-
puter vision, specially work on shape-from-texture [2], and in the context of pose and
articulation invariant shape representation and matching [3–7].

Fig. 1. (Left) A cylindrical seal, (middle) impression left by a cylindrical seal on a (near) devel-
opable surface, and (right) near-intrinsic regular marking created by a car tyre on soft ground.



Fig. 2. Embedded intrinsic regularity on a shape as detected, shown in black, by Euclidean trans-
formation analysis [8] (left) and by our algorithm (right).

State-of-the-art methods [8–10] can detect structured repetitions in 3D geometry if
the Euclidean transformations between repeated patches exhibit group-like behavior.
In case of non-rigid and deformable shapes, however, the problem is challenging since
no apparent structure is visible to simple Euclidean probes in the absence of repetitive
Euclidean transformations to describe the shape (see Figure 4).

In this paper, we address the problem of identifying regularity and repeating struc-
ture on an intrinsic grid on the shape, i.e., regularity detection on (near) developable
surfaces. The Euclidean structure of such a grid depends on the embedding of the
shape in the ambient space. Yet, using an intrinsic notion of distance, the grid becomes
deformation-invariant, and is simpler to identify and extract. To the best of our knowl-
edge, this is the first attempt to detect grid-regularities invariant under isometric de-
formations. We demonstrate our algorithm on a variety of scanned plaster models of
stamped surfaces, with missing parts, and varying degree of noise. Such footprints are
common among stenciled concrete, industrial patterns, impressions of cylindrical seals,
and vehicle tire tracks just to mention a few.

Related work. Symmetry and structure detection in images and shapes is a well-
researched topic in the computer vision and graphics communities (see e.g. [10–19])
with applications including segmentation [20], scan completion [9], pose invariant rep-
resentation [21], image de-fencing [22], shape retrieval [12], and editing images with
repeated elements [23].

Local structure and repetition detection for 3D geometry was addressed by Pauly
et al. [8] where self-similarity is represented as a collection of local Euclidean trans-
formations, parameterized in a suitably designed 7D transformation space. The paper
observes that repeating self-similar structures correspond to regular grids in special
slices of the transformation space, and presents an algorithm for detecting such grid
and, subsequently, the repeating elements. However, this approach is limited to handle
only regular Euclidean lattices. More recently, Park et al. [24] presented a computa-
tional framework using a fourth-degree Markov random fields and mean shift belief
propagation, interleaved with thin plate spline warping, for detecting deformed lattices
or 2D wallpaper patterns in images. To the best of our knowledge, there are no known
extensions to handle intrinsic regularity in 3D geometry.
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Fig. 3. Stages of the proposed algorithm for intrinsic structure detection: Flattening using MDS,
computation of descriptor image, accumulation image, detection of grid generators by autocorre-
lation analysis, local grid refinement, validation and final detected structure (see Section 3).

Raviv et al. [25] introduced intrinsic symmetries as a natural extension of the notion
of symmetry to non-rigid objects, based on a model of shapes as metric spaces [3, 26,
27]. In a separate attempt, Ovsjanikov et al. [28] presented a method for symmetry
detection based on the properties of eigenfunctions of the Laplace-Beltrami operator
of the shape. Since the operator is invariant under isometric deformations, the resultant
symmetry detection also detects intrinsic symmetry of objects. Recently, Xu et al. [29]
introduced an algorithm to obtain intrinsic reflection symmetry axis (IRSA) transform
of objects, followed by an iterative refinement to extract dominant IRSA curves. These
efforts, however, are targeted towards detection of pairwise intrinsic symmetry, and not
for extracting patterns among the detected symmetries.

Although, intrinsic distances has been employed in computer vision in various con-
texts like texture mapping [30], face animation and morphing [31], articulation invari-
ant shape matching [3, 4], their use for repetition or regular structure detection has been
largely unexplored.
Contribution. We extend the notion of regular structure detection in 3D geometry to
handle isometric deformations. The detected structure grids are robust and invariant
to bending and articulations of the shapes. State-of-the-art algorithm [8] in regularity
detection under Euclidean transformations fails to identify such intrinsic structures in
non-rigid shapes since their embedding distorts the Euclidean structures (see Figure 2,
left). By using multidimensional scaling (MDS), the intrinsic geometry of the surface is
mapped into a Euclidean one, thus reducing the problem to the case of Euclidean regu-
larities. Such a planar embedding, however, reduces the problem to a simpler instance
of regular grid detection in the plane, instead of intrinsic grid detection on the surface.
The use of MDS removes the necessity to detect deformed lattices as proposed by Park
et al. [24], leading to a simple, robust, and computationally-efficient algorithm.

2 Background

Let X be a surface modeled as a two-dimensional Riemannian manifold. A parametric
curve γ(t) on X is called a geodesic if parallel transport along the curve preserves the
tangent vector γ̇ to the curve, i.e., ∇γ̇ γ̇ = 0 for each point along the curve (∇ denotes
the covariant derivative on the manifold, roughly equivalent to directional derivative in
a vector space). For any point x and a tangent vector v ∈ TxX , there exists a unique
geodesic passing though x whose tangent vector is v. Also, given a pair of points on
the manifold, the geodesic curve γ is the (locally) shortest path between the points. We



Fig. 4. Photographs of the plasticine imprints scanned in our experiments (top row), the detected
grids in the parametrization domain obtained using MDS along with the locally refined grids
(middle row), and the corresponding intrinsic structure depicted on the scanned models (last
row). Parts of the shape that do not belong to any detected intrinsic regularities are in blue.

denote by dX : X ×X → R the geodesic metric measuring the length of the shortest
paths between points on X .

Recent works [3, 26, 27] have considered non-rigid surfaces as metric spaces of the
form (X, dX) that are deformation-invariant. Raviv et al. [25] defined intrinsic symme-
try as self-isometry with respect to the metric dX : surface X is intrinsically symmetric
if there exists a non-trivial bijection φ : X → X ′ such that dX = dX′ ◦ (φ× φ).

Given a point x and a tangent vector v ∈ TxX , we define translation t by a fixed
length in the direction v using parallel transport on the manifold along the geodesic
passing through point x in the direction v. Rotation R is defined as rotation of the tan-
gent vector v in the tangent plane. With these two operations, we can define an intrinsic
grid as a collection of points or nodes G ⊂ X obtained by successive applications of
translation and rotation operations. For example, an orthogonal intrinsic grid is defined
by setting an origin x and a vector v, having R defined as a rotation by π/2 and t as a
translation by fixed length (Figure 5).

The goal of intrinsic structure detection is to explain the surface using local self-
similarity on an intrinsic grid, i.e., finding the largest grid G that for any pair of points
xi,xj ∈ G the surface is locally self-similar at xi,xj . The main idea of our approach
is as follows: Let X (or its subset) has an isometric embedding into the plane, i.e.,

RRRRRRRRRRRRRRRRR
ttttttttttttttttt

xxxxxxxxxxxxxxxxx

Fig. 5. Example of geodesic grid embedded on the surface.



there exists a bijection ψ : (X, dX) → (R2, dR2) satisfying dX = dR2 ◦ (ψ × ψ).
Here ψ can be thought of as a flattening or parametrization of the surface that replaces
geodesics on X with straight lines in the plane. In particular, the intrinsic regularity
manifests as a grid in the plane. Thus, by means of isometric embedding, the problem
of grid detection on the surface is replaced by planar grid detection, a well-researched
problem in computer vision and image processing. Since a warped surface rarely has
an isometric parametrization in the plane, we find the best ψ that minimize distortion
‖dX −dR2 ◦ (ψ×ψ)‖ in the least squares sense, which, in the discrete case, is obtained
using MDS [32].

3 Intrinsic Structure Detection

We now describe the different stages of our proposed pipeline for detecting intrinsic
structures in 3D geometry (see Figure 3). The algorithm has three main stages: First,
we use MDS for surface flattening, which transfers intrinsic grids defined on the surface
onto the plane. Second, local shape structure is represented using intrinsic descriptors,
and their repeating patterns detected in the plane. Finally, the detected planar grid is
refined, validated, and mapped back to the surface.

In the following, we assume that the shapeX is presented as a triangular mesh built
upon a set of vertices V ≡ {x1, ...,xn}. LetE denote the set of edges with (i, j) ∈ E if
vertices xi,xj are connected by an edge. In our experiments, n is typically 50K–100K.

3.1 Shape Flattening

Distance computation. The geodesic metric on the triangular mesh is approximated
using fast marching (FMM) [33], a numerical solver to the Eikonal equation that com-
putes distance map from a point to the rest of the mesh vertices by simulating wavefront
propagation. To reduce the computational cost of the MDS stage, we use a landmark-
based approach [34]. The mesh is sampled at m � n landmark points (denoted, with-
out loss of generality, by x1, ...,xm) using the farthest point sampling (FPS) proce-
dure [35], performed as follows: Start with some vertex, say x1, selected at random.
The k-th point is selected from V to be the most distant point from the current selection
of k − 1 points, i.e.,

xk = arg max
x∈V

dX({x1, ..,xk−1},x) = arg max
x∈V

min
i=1,..,k−1

dX(xi,x). (1)

FPS produces a subsampling with m approximately equidistant points. Then FMM is
employed to compute the m× n matrix of geodesic distances dX(xi,xj), i = 1, ..,m;
j = 1, .., n between the landmark points and all the vertices of the mesh. In our experi-
ments, we set the sample size m to a default value of 500.
Flattening. The minimum-distortion parametrization ψ is computed using a variant
of landmark MDS [34]. First, the landmark points are embedded into the plane. We
denote by ui = ψ(xi) for i = 1, ..,m their parametrization coordinates in the plane,
i.e., ui ∈ R2, that are found by minimizing the stress function

min
u1,...,um

m∑
i=1

m∑
j=i+1

(dX(xi,xj)− ‖ui − uj‖)2. (2)



Fig. 6. Robustness of our method to missing and corrupt data: occlusions due to imperfect acqui-
sition and synthetic holes (left), simulated Gaussian noise (center), and shot noise (right). Regions
not explained by detected intrinsic structure are in blue.

The minimizer of the stress function is the minimum-distortion parametrization of the
surface in the least squares sense. We use SMACOF iterations [32]

U (k+1) =
1
m
B(U (k))U (k), (3)

repeated until convergence, to solve the LS-MDS problem (2) iteratively4. Here, U is a
m× 2 matrix of landmark point parametrization coordinates with

bij(U) =


dX(xi,xj)
‖ui−uj‖ i 6= j and ‖ui − uj‖ 6= 0,

0 i 6= j and ‖ui − uj‖ = 0,
−

∑
k 6=i bik i = j.

We initialize the LS-MDS solver using classical scaling based on a globally-convergent
algebraic MDS method minimizing the Frobenius norm of the distance distortion. SMA-
COF iterations are guaranteed to produce a monotonically decreasing sequence of stress
values [37].
Interpolation. The obtained landmark parametrization coordinates are employed to
interpolate the parametrization coordinates for the remaining mesh vertices using a
distance-based interpolation proposed in [34]. The interpolated coordinates are inferred
from the landmark coordinates using

uj = −1
2
U†(δj − δ̄),

4 SMACOF iteration is equivalent to a weighted gradient descent and generally does not guar-
antee global convergence. However, using a sufficiently good initialization or multiscale opti-
mization, reasonable convergence is obtained [36].



for j = m + 1, .., n, where U† denotes the pseudoinverse of the matrix of landmark
point parametrization coordinates, δj = (d2

X(xj ,x1), .., d2
X(xj ,xm))T is the m × 1

vector of squared distances from xj to the landmark points, and

δ̄ =
1
m

m∑
i=1

(d2
X(xi,x1), .., d2

X(xi,xm))T

is the average squared distance between the landmark points. Thus, for every vertex
x ∈ V on the mesh, we get a mapping to a corresponding point u = ψ(x) in the plane.

3.2 Grid Detection

Descriptor. We now compute a simple scalar descriptor at each point to facilitate repe-
tition detection in the next stage. The input mesh is smoothed using a discrete Laplacian,

(∆x)i =
1
v(i)

∑
j:(i,j)∈E

xj , (4)

producing a smoothed version Xp = ∆X . Here, v(i) denotes the valence of the vertex
xi, i.e., the number of vertices adjacent to it. We define a scalar descriptor at each vertex
of the mesh as c ≡ 〈x − xp,n〉, where x and xp are the original and smoothed shape
coordinates, respectively, and n is the normal vector to the smoothed mesh at that point.
Such a descriptor captures the high-frequency geometric details or the coating of the
surface, and is insensitive to low-frequency bending and non-rigid deformations. Map-
ping the descriptor to the plane using the parametrization ψ results in a descriptor image
c◦ψ−1, which contains regular Euclidean 2D patterns. In our experiments, we sampled
the descriptor image on a regular planar Cartesian grid with the largest dimension of
128.
Accumulation. The 3D surface of the height-field descriptor image contains regular
structures in the Euclidean sense. While one can detect the repetitions on this derived
surface using the method proposed by Pauly et al. [8], given the nature of the repetitions
in the MDS domain, a much simpler approach is to directly detect the grids on the
descriptor image. An accumulation image representing the repeating patterns in the
descriptor image is constructed as

A(w) =
∑
z

exp(−〈P (z), P (z + w)〉/2σ2) (5)

where P (z) and P (z + w) are normalized descriptor image patches, and the inner
product between them is weighted by a Gaussian window with kernel width σ. Thus,
if the descriptor image contains many patches that are similar up to a displacement by
a vector w, the accumulation image will exhibit a peak at w. In our experiments, by
default, the accumulation image was of size 257× 257, the patch size was 21× 21, and
σ = 0.075 was used.
Autocorrelation. The autocorrelation of the accumulation image allows to find the grid
generators, i.e., the vectors that define the grid in the parametrization domain. Autocor-
relation is computed as the similarity of the accumulation image to its version shifted



by a vector u, represented in polar coordinates. Two peaks are detected in the polar
autocorrelation image, representing the grid generators. Often, there might exist more
than one pair of generators explaining the same grid, as visualized in Figure 10. In such
cases, we give preference to shorter ones resulting in a denser grid.
Phase selection. The detected grid is inherently ambiguous to phase, i.e., shift along
the grid generator vectors (Figure 10). While there is no theoretical preference to a spe-
cific phase of the detected grid, some phases produce semantically and visually more
meaningful results. We perform phase selection by shifting the grid to maximize the lo-
cal variation of the descriptor at the grid nodes. This way, the grid locks onto interesting
geometric features.

3.3 Refinement and Validation

Refinement. Peaks of the autocorrelation function of the accumulation image provide
good generators for grids in the MDS domain. However, because of them being only
approximate, we locally refine the grid point locations as well as remove grid points
and connections that do not correspond to any structural element (see Figure 3). This
local correlation and refinement is performed using descriptor images with twice the
resolution used in the previous stage. We used images with maximum dimension of
256 pixels as default.
Validation. The input mesh and the corresponding MDS descriptor image do not solely
constitute of regular structures. Hence we explicitly identify and extract the structural
elements around each grid point using a greedy growth with validation (see Figure 10).
Finally, we project back the detected structural elements to the surface. In, Figure 4 the
unstructured parts are indicated in blue.
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Fig. 7. Square-shape (see Figure 4) is decomposed into a smooth base and a detail layer consisting
of a structural patch and a repetition grid (top). This enables geometry processing like super-
resolution and synthesis of a shape with the same structural layout but different with geometric
details (bottom).



square oblique Colosseum ball
# vertices 54,880 54,817 57,563 40,601
FMM + MDS 5 5 6 4
interpolation 11 10 12 5
descriptor 3 4 4 4
accumulation 23 34 17 54
correlation 31 41 28 59
refinement 13 16 12 18

Table 1. Mesh sizes and run times (in seconds) for different stages of the algorithm. Performance
measured on a 2 GHz Core Duo Pentium CPU with 3GB of RAM.

4 Results and Applications

For the experiments in this paper, we used scans of objects sculpted and stamped using
plasticine depicted in Figure 4 (first row). The objects were designed to contain intrin-
sically repeating structure, which is hard to perceive if considered in a Euclidean way.
Four objects were used: deformed surfaces with square and oblique grids, a detail of a
curved architectural shape (non-rigid Colosseum), and part of a ball with square grid
structure. Each of the objects presents a different challenge in structure recovery. Thus,
in the Colosseum shape, the structural elements are holes (windows), and the ball has a
non-developable geometry. The objects were scanned using a coded light range camera,
producing triangular meshes that were cleaned up and resampled to about 50K vertices.
Data and code are available for academic use from the project webpage. Our algorithm
is robust to a range of parameter settings, and all the reported results are with a default
set of values.

Figure 4 shows the intrinsic grids detected using the proposed algorithm. The al-
gorithm was implemented in Matlab without optimization. Overall run time in these
examples is about a minute (see Table 1 for detailed timing of each stage of the al-
gorithm). In the 2D processing stages of the algorithm (accumulation image creation,
correlation, and refinement) the complexity is dictated mainly by the descriptor image

Fig. 8. Intrinsic structures can be detected on scans with missing data (left). The detected structure
is used to propagate structural elements from healthy regions to conceal the damaged or missing
areas (right).
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Fig. 9. Structural correspondence, up to phase ambiguity, between two geometrically different
shapes having similar repeating structures, established using the detected correspondence be-
tween the respective intrinsic grids. Combinatorially similar respective grids are shown at the
top right and top left, respectively. High-frequency texture mapping was used to visualize the
accuracy of local correspondence.

size, which, in turn, depends on the way MDS embedding maps the surface into the
plane. For comparison, Figure 2 (left) shows the results produced by Euclidean struc-
ture detection of Pauly et al. [8]. Only a small part of the grid (four points located in the
flat part of the shape) is recovered. The behavior is similar for the other scans.
Robustness. The proposed algorithm is insensitive to noise and can work even when
large parts of the grid are missing. Figure 6 (left) shows examples of grid detection
is shapes suffering from missing details (resulting from real occlusion artifacts in 3D
acquisition and synthetic removal of parts of the shape). Despite large portions of the
shape missing (up to 35% in Figure 6, middle), most of the grid structure is correctly
detected. Figure 6 (middle) shows a shape contaminated by random Gaussian noise
with standard deviation of about 70% of the average feature elevation, while Figure 6
(right) shows corruption by shot noise appearing as spikes. Besides a few missing grid
nodes, the repeating structure is detected correctly in these cases as well.
Geometry substitution. A shape can be decomposed into a low-frequency base gov-
erning the embedding in R3, and the high-frequency detail admitting the intrinsic re-
peating pattern. Replacing the detail allows to synthesize new shapes sharing with the
original one the 3D layout, while retaining the repeating structure. An example of such
a substitution is presented in Figure 7. The low-frequency surface was obtained by solv-
ing the Laplace equation for the surface coordinates with the grid lines serving as the
boundary conditions. The new detail was mapped onto the low-frequency base using
a normal displacement map. Detail substitution can be used to conceal irregularities
of a regular shape due to manufacturing or acquisition imperfections. In this case, the
structural element from a “healthy” region of the shape is transferred to a damaged one
as shown in Figure 8. While MDS mapping by itself can be influenced by topological
errors, the grid detection and refinement phases make the pipeline robust to small holes
and perforations (see also the Colosseum example). Use of topologically-consistent
weighted MDS [38] can increase the stability of the system. In this example, we first
closed the holes using smooth interpolation; the interpolated regions were healed by
detail transfer from healthy regions resulting in a nearly perfectly regular shape. Sub-
stituting the detail with its higher resolution version (obtained, for example, from a
close-up scan or a CAD model) produces super-resolution of the original shape, al-



Fig. 10. Ambiguities inherent to intrinsic grid detection: phase (left), shape of the structural ele-
ment (middle), and different generators explaining the same grid (right). All such results provide
plausible explanations to the intrinsic structure of the oblique-shape. For reference, results from
Figure 4 are overlaid as blue curves/spheres.

lowing to overcome the classical field-of-view versus resolution tradeoff or combine
different acquisition modalities (see Figure 7 for an example).
Structural correspondence. The knowledge of intrinsic structure allows us to estab-
lish correspondence between objects significantly different geometrically and topolog-
ically, yet resembling in their self-similarity structure. This concept has been recently
explored in image analysis applications for comparison of images depicting similar
concept in visually different ways [5]. Given two shapes with similar intrinsic struc-
tures, we first extract the intrinsic grids and then find the correspondence between these
grids. The structural elements and the extrinsic geometry of the shapes can be wildly
different, as exemplified in Figure 9. Such a great difference in geometry and topology
is an obstacle that most state-of-the-art non-rigid correspondence methods find very
challenging to overcome.

5 Conclusions

We presented an approach for intrinsic local self-similarity detection in 3D shapes. Un-
like previous approaches limited to Euclidean self-similarity, our approach is able to
detect warped and curved grids. By using MDS, we reduce the problem of intrinsic
grid detection on the surface to regular grid detection in the plane. We demonstrated
the efficiency and robustness of the method on various scanned (stamped) models with
different geometries, topologies, and structures, as well as real and simulated artifacts.
Examples of applications to scan completion, detail substitution, super-resolution, and
correspondence between structurally similar yet geometrically and topologically differ-
ent shapes were presented.
Limitations and extensions. The current limitation of our approach is that the use
of planar parametrization implies a tacit assumption that the topology of the surface is
coarsely similar to that of the plane. While this is true in many cases of shapes acquired
by means of a range scanner and represented as geometry images, a generic shape may
have more complicated topology, e.g. of a sphere. Trying to embed such shapes into
the plane would result in large distortions such that intrinsic grids would be no more
mapped into planar regular grids. A possible way to handle complex topologies is by



applying MDS in a local manner, to disk-like regions on the shape, and then stitch
together the detected grids, which we leave to future work.

Other limitations, inherent to regular structure detection in general, are the ambigu-
ities in phase and non-uniqueness of the grid generators and the structural elements (see
Figure 10). Optimization over these parameters with the goal to achieve optimal pack-
ing of full structural elements over the shape can be a way to resolve such ambiguities.
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