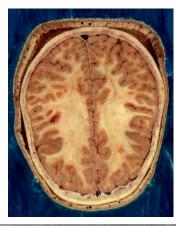
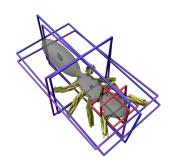
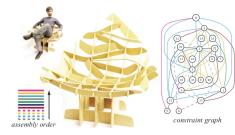
Surface Perception of Planar Abstractions

James McCrae Niloy J. Mitra Karan Singh

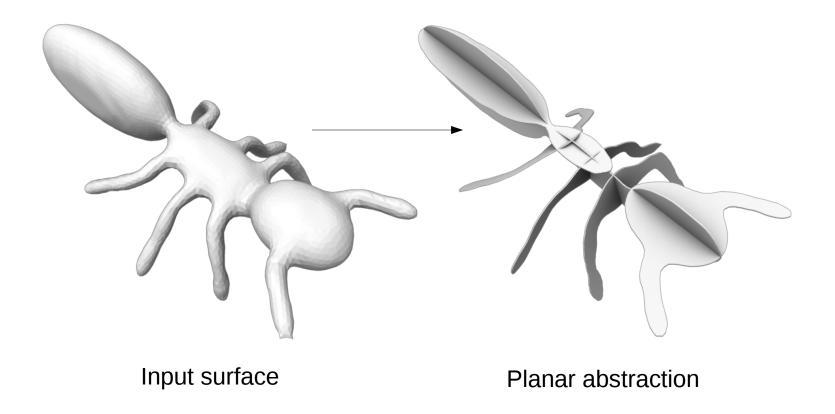
L

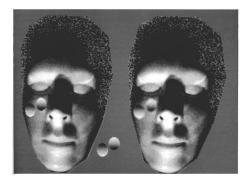

Planar Abstractions

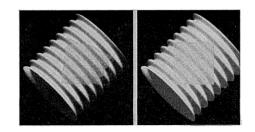


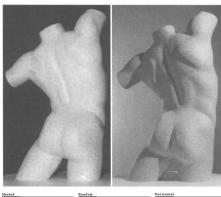

Planar Abstractions

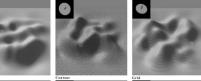
Slices: A Shape-proxy Based on Planar Sections James McCrae, Karan Singh, Niloy Mitra SIGGRAPH Asia, 2011

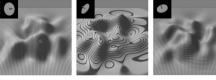

crdbrd: Shape Fabrication by Sliding Planar Slices Kristian Hildebrand, Bernd Bickel, Marc Alexa Eurographics, 2012

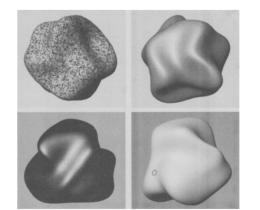

Fabrication-aware Design with Intersecting Planar Pieces Yuliy Schwartzburg and Mark Pauly Eurographics, 2013

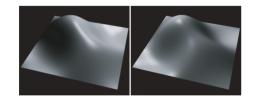

Planar Abstractions

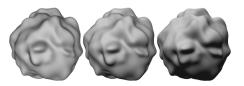

How effective are planar abstractions at representing shape?

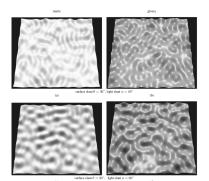


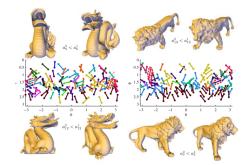

Visual Perception of Shape

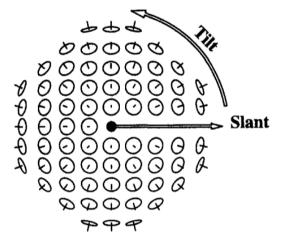


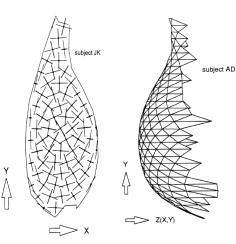






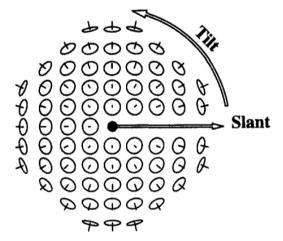


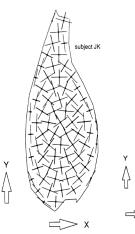


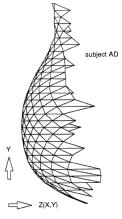

Visual Perception of Shape

Surface Perception in Pictures

Jan J. Koenderink, Andrea J. van Doorn, Astrid M. L. Kappers Perception and Psychophysics, 1992




Visual Perception of Shape


Surface Perception in Pictures

Jan J. Koenderink, Andrea J. van Doorn, Astrid M. L. Kappers Perception and Psychophysics, 1992

How well do line drawings depict shape?

Forrester Cole, Kevin Sanik, Doug DeCarlo, Adam Finkelstein, Thomas Funkhouser, Szymon Rusinkiewicz, Manish Singh ACM Transactions on Graphics (Proc. SIGGRAPH), 2009

ridges and valleys

suggestive contours

artist's drawing

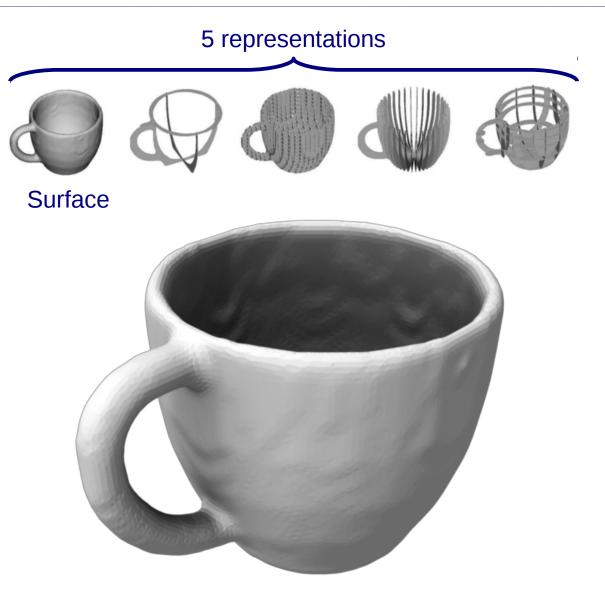
Overview

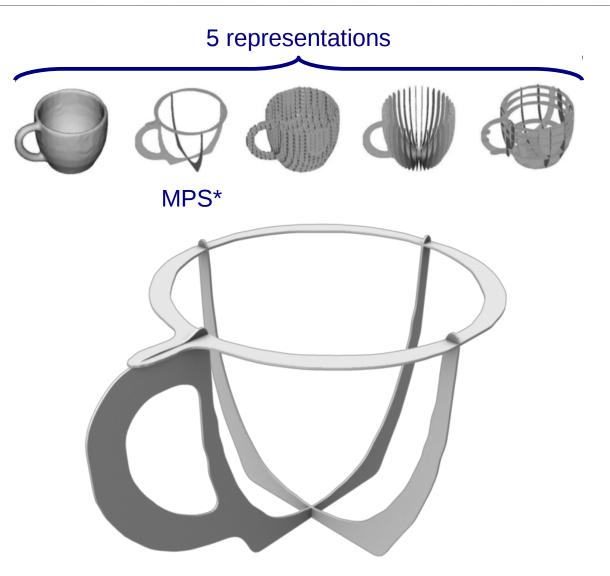
Surface perception user study

Analysis of participant study data

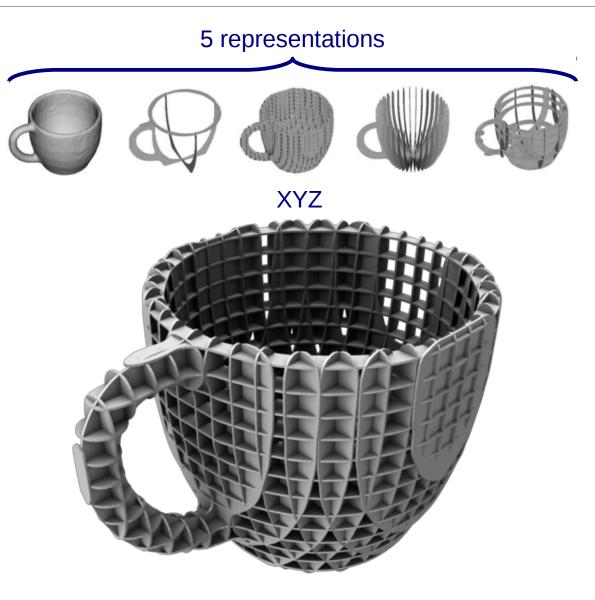
Predicting perception error and application

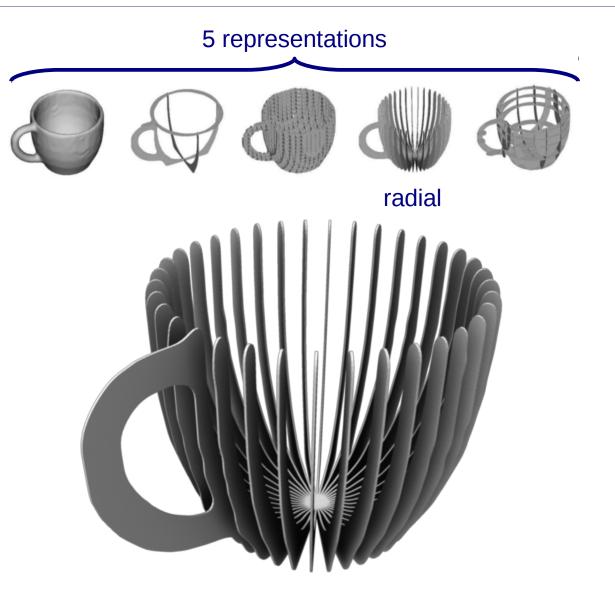
Overview

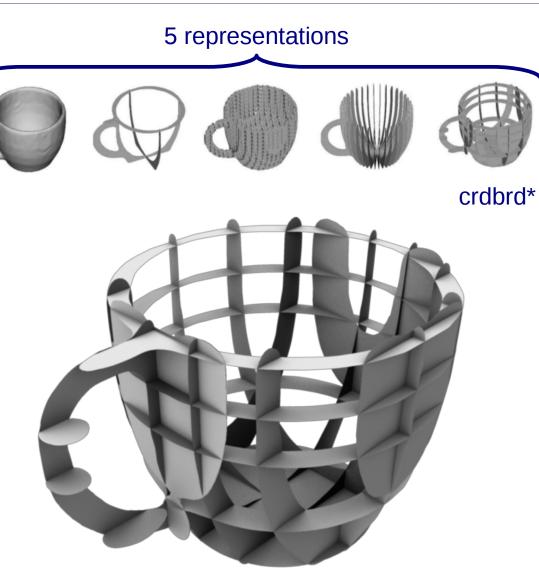

Surface perception user study

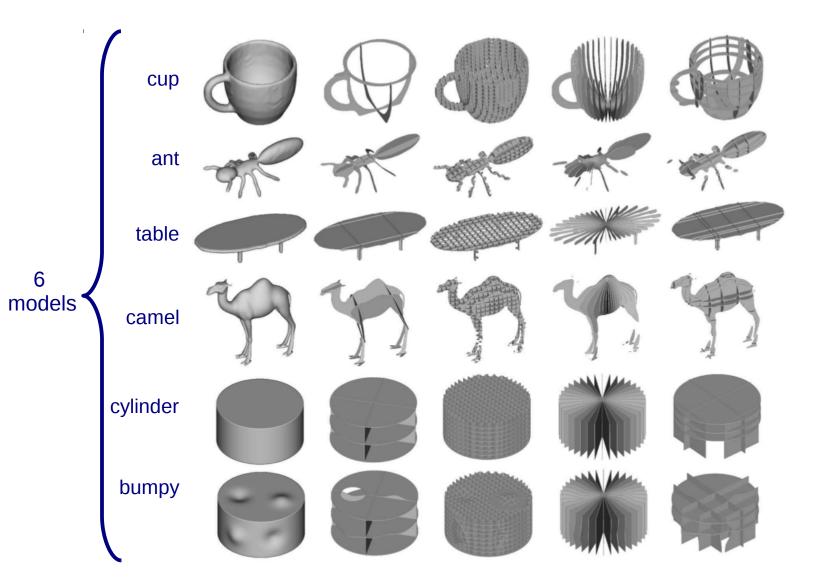

Analysis of participant study data

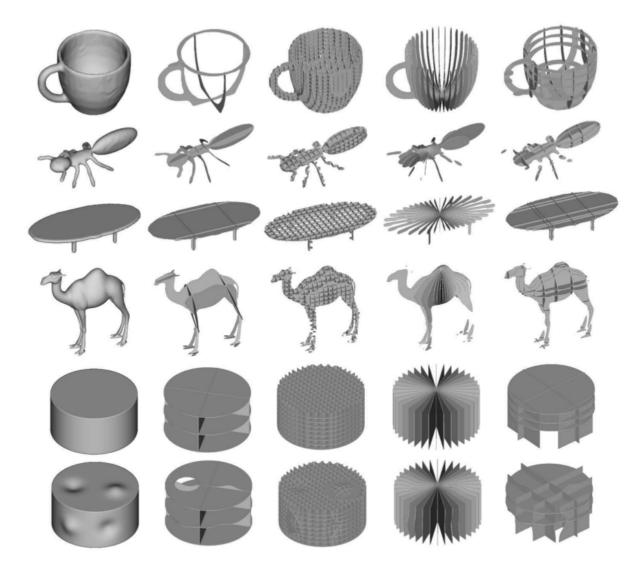
Predicting perception error and application


5 representations

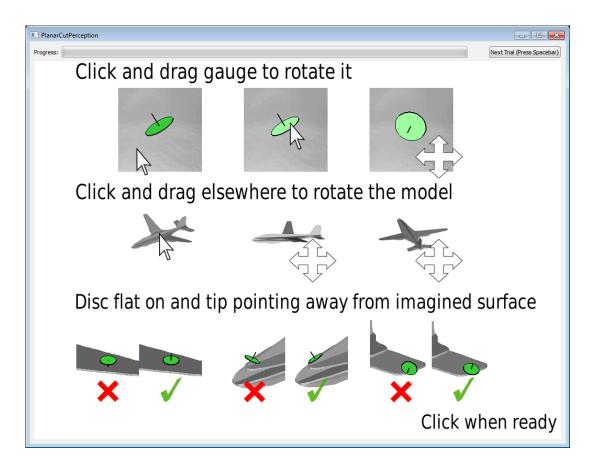




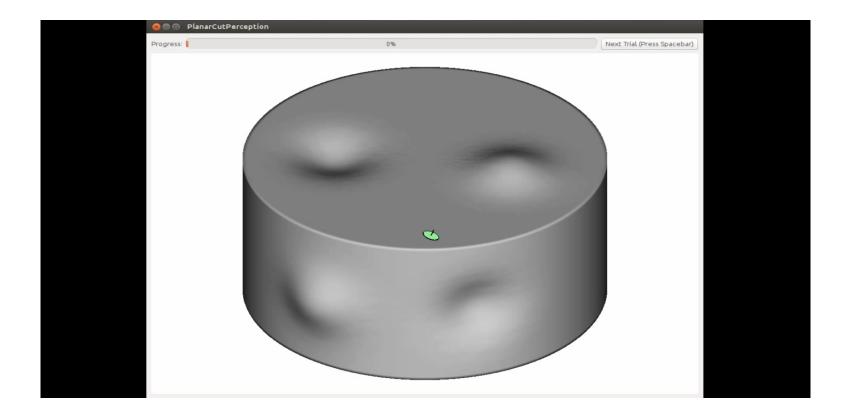

*Slices: A Shape-proxy Based on Planar Sections James McCrae, Karan Singh, Niloy Mitra SIGGRAPH Asia, 2011



**crdbrd: Shape Fabrication by Sliding Planar Slices* Kristian Hildebrand, Bernd Bickel, Marc Alexa Eurographics, 2012

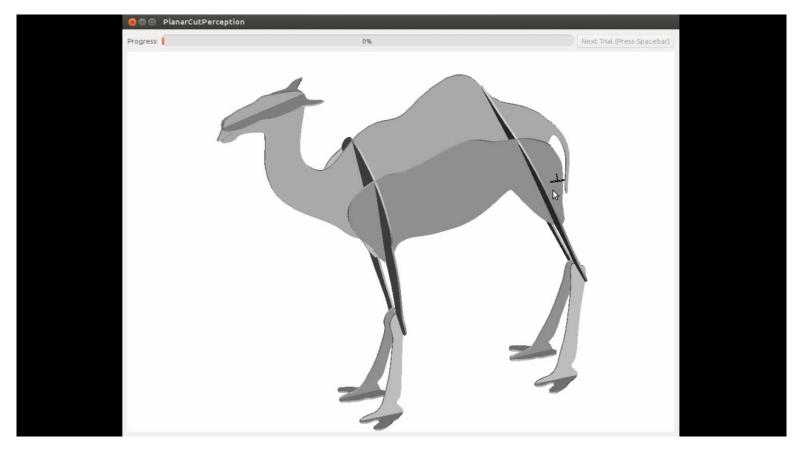


5 representations * 6 models = 30 different visual stimuli in total


Methodology

Mechanical Turk participants with a *unique worker ID* view an instructions screen.

Methodology


Mechanical Turk participants with a unique worker ID view an instructions screen. Participants adjust 60 gauges (30 pairs).

Conditions in video: fixed view task, surface representation

Methodology

Mechanical Turk participants with a unique worker ID view an instructions screen. Participants adjust 60 gauges (30 pairs).

Conditions in video: rotated view task, MPS representation

Data Collection

- 178 unique participants
- 1161 runs of the study
- \$0.35 paid for each run
- Total of ~70,000 gauge samples

Data Collection

- 178 unique participants
- 1161 runs of the study
- \$0.35 paid for each run
- Total of ~70,000 gauge samples

Data Verification

• Participants are greedy (want most money in shortest time/least effort)

Data Collection

- 178 unique participants
- 1161 runs of the study
- \$0.35 paid for each run
- Total of ~70,000 gauge samples

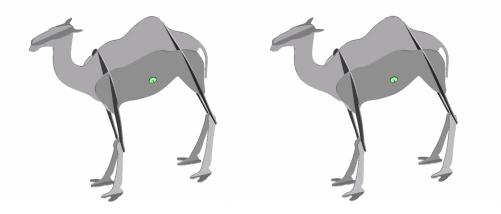
Data Verification

- Participants are greedy (want most money in shortest time/least effort)
- Imagined surface details from planar abstractions leads to errors even despite best intentions

Data Collection

- 178 unique participants
- 1161 runs of the study
- \$0.35 paid for each run
- Total of ~70,000 gauge samples

Data Verification

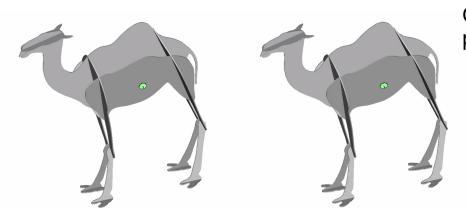

- Participants are greedy (want most money in shortest time/least effort)
- Imagined surface details from planar abstractions leads to errors even despite best intentions
- This requires a strategy to tolerate errors arising from honest intent

Data Collection

- 178 unique participants
- 1161 runs of the study
- \$0.35 paid for each run
- Total of ~70,000 gauge samples

Data Verification

- Participants are greedy (want most money in shortest time/least effort)
- Imagined surface details from planar abstractions leads to errors even despite best intentions
- This requires a strategy to tolerate errors arising from honest intent
- "Gauge pairs" verify intent (gauges set at same position should have consistent orientation)



Data Collection

- 178 unique participants
- 1161 runs of the study
- \$0.35 paid for each run
- Total of ~70,000 gauge samples

Data Verification

- Participants are greedy (want most money in shortest time/least effort)
- Imagined surface details from planar abstractions leads to errors even despite best intentions
- This requires a strategy to tolerate errors arising from honest intent
- "Gauge pairs" verify intent (gauges set at same position should have consistent orientation)

Conditions for angle between gauge pairs

- < 30 degrees, 70% of the time
- standard deviation > 5 degrees

Overview

Surface perception user study

Analysis of participant study data

Predicting perception error and application

- Outliers (removal if mean error with group > 3 standard deviations)
 - One participant with mean error > 120 degrees
 - 4 of 182 participants classified as outliers, removed

Initial Analysis

- Outliers (removal if mean error with group > 3 standard deviations)
 - One participant with mean error > 120 degrees
 - 4 of 182 participants in total classified as outliers and removed

......

TIM

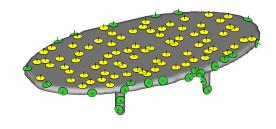
• Average error

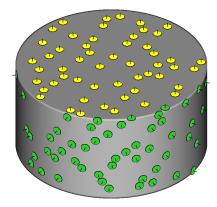
			\square			
		surface	MPS	XYZ	radial	crdbrd
	Cup	20.7	50.4	31.5	62.7	54.7
		22.5	46.7	23.9	44.4	55.2
The second secon	Ant	24.6	40.8	32.5	44.9	48.0
		24.5	39.9	30.8	38.0	47.9
	Table	13.2	14.8	17.4	49.9	16.8
		13.1	15.0	13.4	38.5	26.0
	Camel	26.1	35.9	28.5	42.2	40.9
		25.5	34.3	25.7	34.6	44.9
	Cylinder	17.7	36.8	21.1	58.3	25.7
		16.2	35.2	15.6	41.5	31.4
-	Bumpy	19.2	38.3	20.8	59.2	42.0
		18.8	35.5	16.3	42.3	40.9
Fixed view	Average	20.2	36.2	24.3	52.8	38.0
Rotated view		20.1	34.4	21.0	39.9	41.0

Initial Analysis

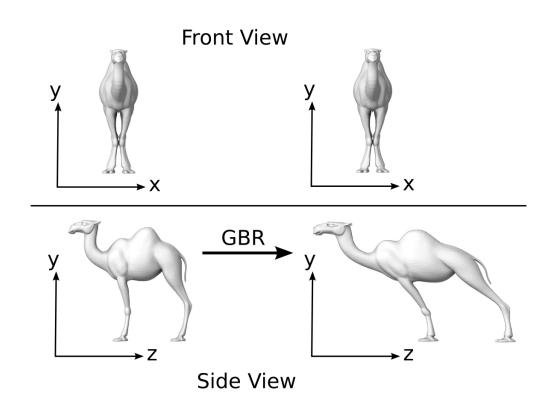
- Outliers (removal if mean error with group > 3 standard deviations)
 - One participant with mean error > 120 degrees
 - 4 of 182 participants in total classified as outliers and removed

......


TIM

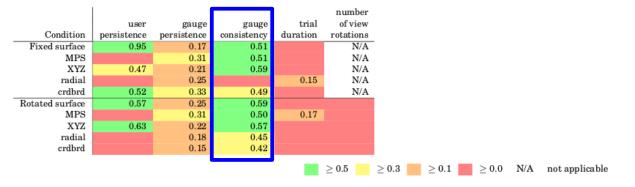

Average error

			\square			
		surface	MPS	XYZ	radial	crdbrd
	Cup	20.7	50.4	31.5	62.7	54.7
		22.5	46.7	23.9	44.4	55.2
77	Ant	24.6	40.8	32.5	44.9	48.0
		24.5	39.9	30.8	38.0	47.9
	Table	13.2	14.8	17.4	49.9	16.8
3		13.1	15.0	13.4	38.5	26.0
	Camel	26.1	35.9	28.5	42.2	40.9
		25.5	34.3	25.7	34.6	44.9
	Cylinder	17.7	36.8	21.1	58.3	25.7
		16.2	35.2	15.6	41.5	31.4
-	Bumpy	19.2	38.3	20.8	59.2	42.0
		18.8	35.5	16.3	42.3	40.9
Fixed view	Average	20.2	36.2	24.3	52.8	38.0
Rotated view		20.1	34.4	21.0	39.9	41.0


- Outliers (removal if mean error with group > 3 standard deviations)
 - One participant with mean error > 120 degrees
 - 4 of 182 participants in total classified as outliers and removed
- Average error
- Average error (for flat models/regions only)

		\square			
	surface	MPS	XYZ	radial	crdbrd
Table	10.6	10.9	12.7	48.8	12.5
	9.2	10.5	8.3	37.1	22.2
Cylinder	15.5	10.6	14.4	48.2	11.6
	13.3	9.9	7.9	34.9	19.1
Average	13.1	10.7	13.5	48.5	12.0
	11.2	10.2	8.1	36.0	20.7
	Cylinder	Table 10.6 9.2 Cylinder 15.5 13.3 Average 13.1	Table10.610.99.210.5Cylinder15.510.613.39.9Average13.110.7	Table10.610.912.79.210.58.3Cylinder15.510.614.413.39.97.9Average13.110.713.5	Table10.610.912.748.89.210.58.337.1Cylinder15.510.614.448.213.39.97.934.9Average13.110.713.548.5

- Outliers (removal if mean error with group > 3 standard deviations)
 - One participant with mean error > 120 degrees
 - 4 of 182 participants in total classified as outliers and removed
- Average error
- Average error (for flat models/regions only)
- On the bas-relief ambiguity



- Outliers (removal if mean error with group > 3 standard deviations)
 - One participant with mean error > 120 degrees
 - 4 of 182 participants in total classified as outliers and removed
- Average error
- Average error (for flat models/regions only)
- On the bas-relief ambiguity
 - Does not apply to rotated view task
 - Fixed view and rotated view tasks had same performance
 - Applying optimal GBR transform can significantly reduce error (often more than 5 degrees)

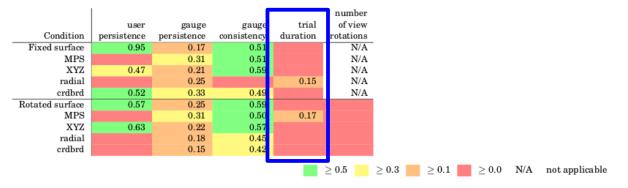
Fixed view	Average	20.2	36.2	24.3	52.8	38.0
Rotated view		20.1	34.4	21.0	39.9	41.0

General correlations

Gauge consistency (participant agreement)

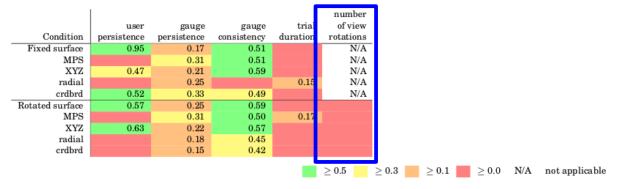
Pearson product-moment correlation coefficients (r)

General correlations


- Gauge consistency (participant agreement)
- User persistence (a participant's gauge pair settings match)

Pearson product-moment correlation coefficients (r)

General correlations


- Gauge consistency (participant agreement)
- User persistence (a participant's gauge pair settings match)
- Gauge persistence, trial duration, number of view rotations

Pearson product-moment correlation coefficients (r)

General correlations

- Gauge consistency (participant agreement)
- User persistence (a participant's gauge pair settings match)
- Gauge persistence, trial duration, number of view rotations

Surface-specific correlations

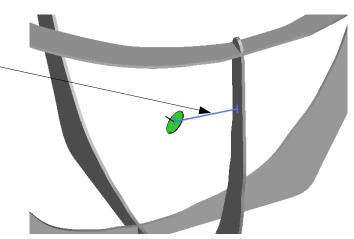
• Curvature (κ_1 , κ_2 , Gaussian, mean)

					number						medial		view-norm
	user	gauge	gauge	trial	of view	absolute	absolute	Gaussian	mean	local	axis	centroid	angle
Condition	persistence	persistence	consistency	duration	rotations	κ ₁	κ_2	curvature	curvature	thickness	distance	distance	difference
Fixed surface	0.95	0.17	0.51		N/A	0.51	0.42	0.44	0.49		-0.13		-0.17
MPS		0.31	0.51		N/A	0.42	0.26	0.19	0.42	0.49	-0.20	0.23	
XYZ	0.47	0.21	0.59		N/A	0.54	0.42	0.46	0.53		-0.24	0.11	-0.14
radial		0.25		0.15	N/A		-0.14	-0.16		0.39	-0.10	0.28	0.21
crdbrd	0.52	0.33	0.49		N/A	0.46	0.41	0.33	0.46	0.14	-0.16	0.15	
Rotated surface	0.57	0.25	0.59			0.60	0.50	0.53	0.57		-0.21		-0.19
MPS		0.31	0.50	0.17		0.40	0.25	0.18	0.39	0.46	-0.20	0.21	-0.13
XYZ	0.63	0.22	0.57			0.64	0.50	0.56	0.62		-0.28		-0.22
radial		0.18	0.45			0.12			0.11	0.22	-0.16	0.21	0.15
crdbrd		0.15	0.42			0.43	0.37	0.31	0.42		-0.20	0.10	
					≥ 0.5	≥ 0.3	≥ 0.1	≥ 0.0 N/A	A not app	licable			

Surface-specific correlations

- Curvature (κ_1 , κ_2 , Gaussian, mean)
- Local thickness

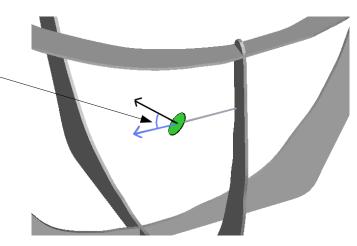
					number						medial		view-norm
	user	gauge	gauge	trial	of view	absolute	absolute	Gaussian	mean	local	axis	centroid	angle
Condition	persistence	persistence	consistency	duration	rotations	κ ₁	κ ₂	curvature	curvature	thickness	distance	distance	difference
Fixed surface	0.95	0.17	0.51		N/A	0.51	0.42	0.44	0.49		-0.13		-0.17
MPS		0.31	0.51		N/A	0.42	0.26	0.19	0.42	0.49	-0.20	0.23	
XYZ	0.47	0.21	0.59		N/A	0.54	0.42	0.46	0.53		-0.24	0.11	-0.14
radial		0.25		0.15	N/A		-0.14	-0.16		0.39	-0.10	0.28	0.21
crdbrd	0.52	0.33	0.49		N/A	0.46	0.41	0.33	0.46	0.14	-0.16	0.15	
Rotated surface	0.57	0.25	0.59			0.60	0.50	0.53	0.57		-0.21		-0.19
MPS		0.31	0.50	0.17		0.40	0.25	0.18	0.39	0.46	-0.20	0.21	-0.13
XYZ	0.63	0.22	0.57			0.64	0.50	0.56	0.62		-0.28		-0.22
radial		0.18	0.45			0.12			0.11	0.22	-0.16	0.21	0.15
crdbrd		0.15	0.42			0.43	0.37	0.31	0.42		-0.20	0.10	
					≥ 0.5	> 0.3	> 0.1	> 0.0 N/.	A not app	licable			


Surface-specific correlations

- Curvature (κ_1 , κ_2 , Gaussian, mean)
- Local thickness
- Medial axis distance, centroid distance, view-norm angle difference

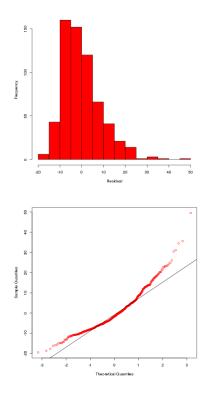
Condition	user persistence	gauge persistence	gauge	trial duration	number of view rotations	absolute κ_1	absolute κ_2	Gaussian curvature	mean curvature	local thickness	medial axis distance	centroid distance	view-norm angle difference
Fixed surface	0.95	0.17	0.51		N/A	0.51	0.42	0.44	0.49		-0.13		-0.17
MPS		0.31	0.51		N/A	0.42	0.26	0.19	0.42	0.49	-0.20	0.23	
XYZ	0.47	0.21	0.59		N/A	0.54	0.42	0.46	0.53		-0.24	0.11	-0.14
radial		0.25		0.15	N/A		-0.14	-0.16		0.39	-0.10	0.28	0.21
crdbrd	0.52	0.33	0.49		N/A	0.46	0.41	0.33	0.46	0.14	-0.16	0.15	
Rotated surface	0.57	0.25	0.59			0.60	0.50	0.53	0.57		-0.21		-0.19
MPS		0.31	0.50	0.17		0.40	0.25	0.18	0.39	0.46	-0.20	0.21	-0.13
XYZ	0.63	0.22	0.57			0.64	0.50	0.56	0.62		-0.28		-0.22
radial		0.18	0.45			0.12			0.11	0.22	-0.16	0.21	0.15
crdbrd		0.15	0.42			0.43	0.37	0.31	0.42		-0.20	0.10	
					≥ 0.5	≥ 0.3	≥ 0.1	≥ 0.0 N/	A not app	licable			

Abstraction-specific correlations

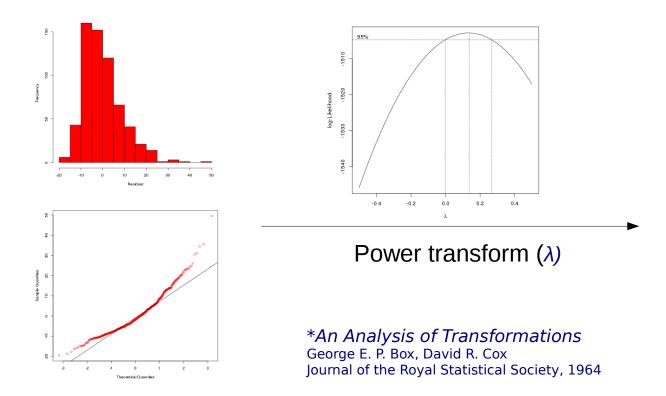

Abstraction distance

					number						medial		view-norm		abstraction
	user	gauge	gauge	trial	of view	absolute	absolute	Gaussian	mean	local	axis	centroid	angle	abstraction	angle
Condition	persistence	persistence	consistency	duration	rotations	κ_1	κ_2	curvature	curvature	thickness	distance	distance	difference	distance	difference
Fixed surface	0.95	0.17	0.51		N/A	0.51	0.42	0.44	0.49		-0.13		-0.17	N/A	N/A
MPS		0.31	0.51		N/A	0.42	0.26	0.19	0.42	0.49	-0.20	0.23		0.39	0.72
XYZ	0.47	0.21	0.59		N/A	0.54	0.42	0.46	0.53		-0.24	0.11	-0.14	0.13	-0.26
radial		0.25		0.15	N/A		-0.14	-0.16		0.39	-0.10	0.28	0.21	0.20	0.30
crdbrd	0.52	0.33	0.49		N/A	0.46	0.41	0.33	0.46	0.14	-0.16	0.15		0.17	0.43
Rotated surface	0.57	0.25	0.59			0.60	0.50	0.53	0.57		-0.21		-0.19	N/A	N/A
MPS		0.31	0.50	0.17		0.40	0.25	0.18	0.39	0.46	-0.20	0.21	-0.13	0.37	0.72
XYZ	0.63	0.22	0.57			0.64	0.50	0.56	0.62		-0.28		-0.22		-0.35
radial		0.18	0.45			0.12			0.11	0.22	-0.16	0.21	0.15	0.19	0.17
crdbrd		0.15	0.42			0.43	0.37	0.31	0.42		-0.20	0.10			0.43
					≥ 0.5	≥ 0.3	≥ 0.1	> 0.0 N/	A not app	licable					

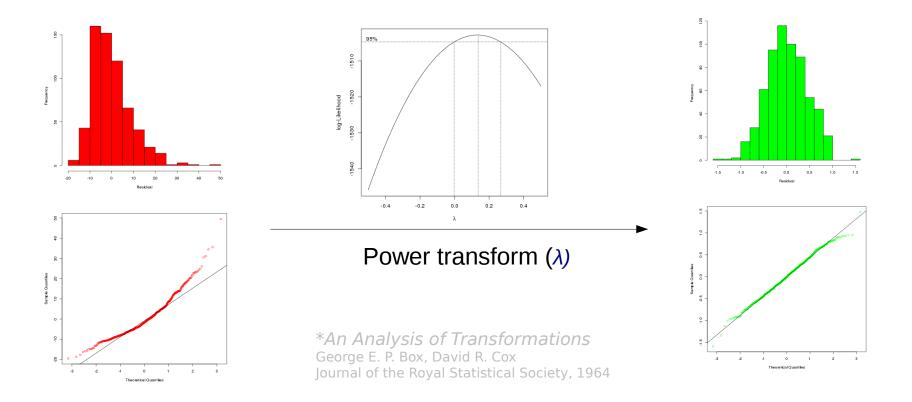
Abstraction-specific correlations


- Abstraction distance
- Abstraction angle difference

					number						medial		view-norm		abstraction
	user	gauge	gauge	trial	of view	absolute	absolute	Gaussian	mean	local	axis	centroid	angle	abstraction	angle
Condition	persistence	persistence	consistency	duration	rotations	κ_1	κ_2	curvature	curvature	thickness	distance	distance	difference	distance	difference
Fixed surface	0.95	0.17	0.51		N/A	0.51	0.42	0.44	0.49		-0.13		-0.17	N/A	N/A
MPS		0.31	0.51		N/A	0.42	0.26	0.19	0.42	0.49	-0.20	0.23		0.39	0.72
XYZ	0.47	0.21	0.59		N/A	0.54	0.42	0.46	0.53		-0.24	0.11	-0.14	0.13	-0.26
radial		0.25		0.15	N/A		-0.14	-0.16		0.39	-0.10	0.28	0.21	0.20	0.30
crdbrd	0.52	0.33	0.49		N/A	0.46	0.41	0.33	0.46	0.14	-0.16	0.15		0.17	0.43
Rotated surface	0.57	0.25	0.59			0.60	0.50	0.53	0.57		-0.21		-0.19	N/A	N/A
MPS		0.31	0.50	0.17		0.40	0.25	0.18	0.39	0.46	-0.20	0.21	-0.13	0.37	0.72
XYZ	0.63	0.22	0.57			0.64	0.50	0.56	0.62		-0.28		-0.22		-0.35
radial		0.18	0.45			0.12			0.11	0.22	-0.16	0.21	0.15	0.19	0.17
crdbrd		0.15	0.42			0.43	0.37	0.31	0.42		-0.20	0.10			0.43
					≥ 0.5	≥ 0.3	≥ 0.1	≥ 0.0 N/	A not app	licable					


Improving correlations

Histograms and Q-Q plots reveal whether regression residuals follow a normal distribution


Improving correlations

- Histograms and Q-Q plots reveal whether regression residuals follow a normal distribution
- Box-Cox method* finds optimal power parameter λ to transform measurements to improve normality

Improving correlations

- Histograms and Q-Q plots reveal whether regression residuals follow a normal distribution
- Box-Cox method* finds optimal power parameter λ to transform measurements to improve normality
- For curvature $\lambda = 0.25$ and medial axis distance $\lambda = 2.0$

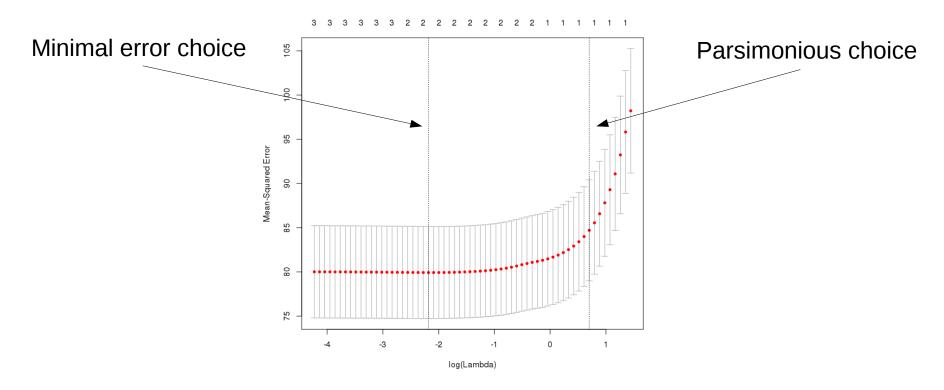
Overview

Surface perception user study

Analysis of participant study data

Predicting perception error and application

- *Supervised learning:* We use the study data to create a predictive model for task error
- *Predictors:* independent variables, measurements we can make at surface points (e.g. curvature, local thickness)
- *Response:* dependent variable, the outcome task error

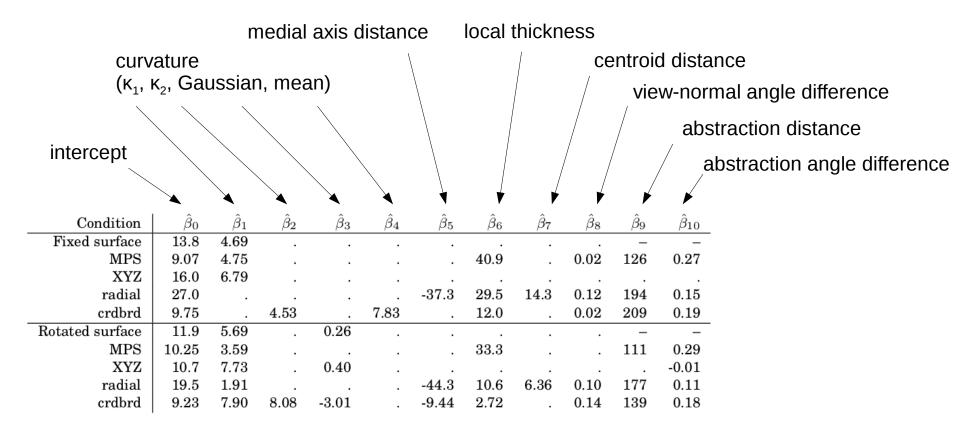

• Linear models take the following form:

$$f(\mathbf{x}) = \hat{\beta}_0 + \sum_{j=1}^p \hat{\beta}_j h_j(\mathbf{x})$$

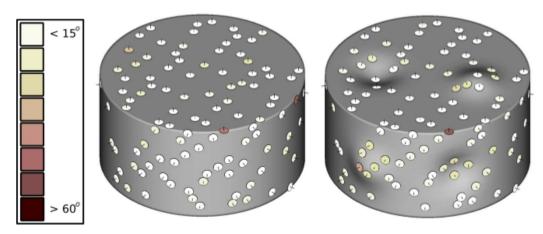
- p the number of predictors
- \boldsymbol{x} a vector of \boldsymbol{p} predictor measurements
- h_i each predictor *j*'s transformation function
- $\hat{\beta}$ vector of (p+1) parameters of the linear model

Regularization

- LASSO* minimizes the L1-norm of $\,oldsymbol{eta}\,$
- Model parameters selected *parsimoniously*: compromise between few predictors *and* low error of fit

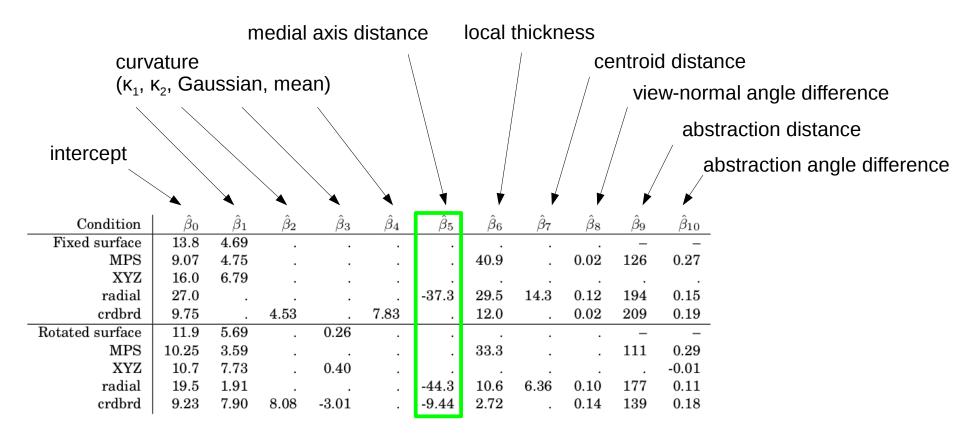

*Regression shrinkage and selection via the lasso Robert Tibshirani Journal of the Royal Statistical Society, 1996

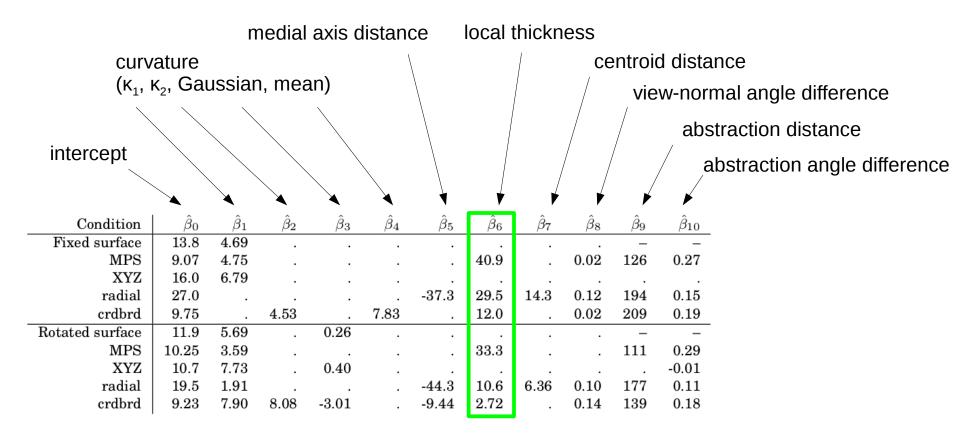
Regularization

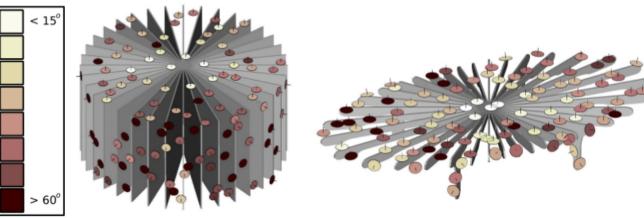

- LASSO [Tibshirani 1996] minimizes the L1-norm of $\hat{oldsymbol{eta}}$
- Model parameters selected *parsimoniously*: compromise between few predictors *and* low error of fit

Validation

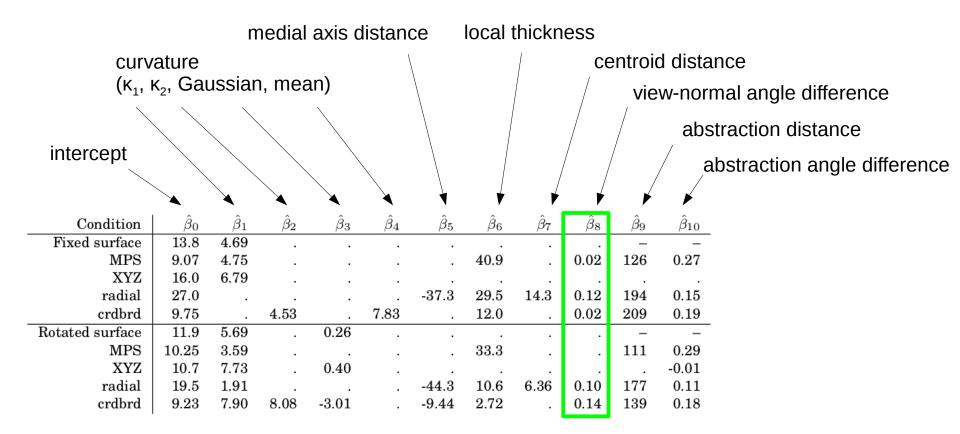
- We perform *k*-fold cross-validation (for *k*=10)
 - The *n* input samples divided into 10 equally sized folds
 - Linear model trained using samples from 9 folds, last used for testing
 - Repeat 10 times, using each fold for testing once
- Estimated prediction error the mean absolute error over all 10 folds

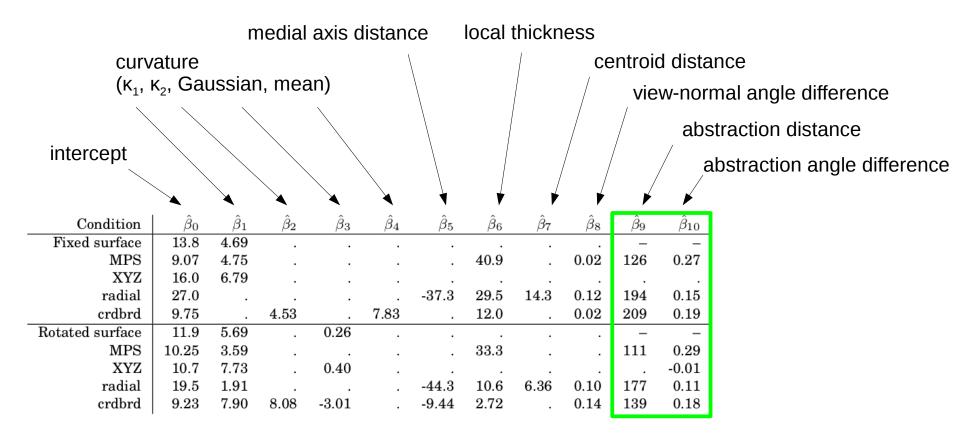



Models and Performance


Condition	\hat{eta}_0	\hat{eta}_1	\hat{eta}_2	\hat{eta}_3	\hat{eta}_4	\hat{eta}_5	\hat{eta}_6	\hat{eta}_7	\hat{eta}_8	\hat{eta}_9	$\hat{\beta}_{10}$
Fixed surface	13.8	4.69								_	_
MPS	9.07	4.75					40.9		0.02	126	0.27
XYZ	16.0	6.79									
radial	27.0					-37.3	29.5	14.3	0.12	194	0.15
crdbrd	9.75		4.53		7.83		12.0		0.02	209	0.19
Rotated surface	11.9	5.69		0.26						_	_
MPS	10.25	3.59					33.3			111	0.29
XYZ	10.7	7.73		0.40							-0.01
radial	19.5	1.91				-44.3	10.6	6.36	0.10	177	0.11
crdbrd	9.23	7.90	8.08	-3.01		-9.44	2.72		0.14	139	0.18

(κ_1 , κ_2 , Gaussian, mean) curvature




Models and Performance

Condition	\hat{eta}_0	$\hat{\beta}_1$	$\hat{\beta}_2$	\hat{eta}_3	\hat{eta}_4	\hat{eta}_5	\hat{eta}_6	\hat{eta}_7	\hat{eta}_8	\hat{eta}_9	$\hat{\beta}_{10}$
Fixed surface	13.8	4.69								_	_
MPS	9.07	4.75					40.9		0.02	126	0.27
XYZ	16.0	6.79									
radial	27.0					-37.3	29.5	14.3	0.12	194	0.15
crdbrd	9.75		4.53		7.83		12.0		0.02	209	0.19
Rotated surface	11.9	5.69		0.26						_	_
MPS	10.25	3.59					33.3			111	0.29
XYZ	10.7	7.73		0.40							-0.01
radial	19.5	1.91				-44.3	10.6	6.36	0.10	177	0.11
crdbrd	9.23	7.90	8.08	-3.01		-9.44	2.72		0.14	139	0.18

centroid distance

- MAPE Mean Absolute **Predicted Error**
- MABE Mean Absolute Base Error
- "Improved" 1.0 MAPE/MABE (expressed as percentage)

Condition	$\hat{\beta}_0$	$\hat{\beta}_1$	$\hat{\beta}_2$	\hat{eta}_3	\hat{eta}_4	\hat{eta}_5	\hat{eta}_6	\hat{eta}_7	$\hat{\beta}_8$	\hat{eta}_9	$\hat{\beta}_{10}$	MAPE	MABE	Improved
Fixed surface	13.8	4.69								_	-	6.43	7.64	16%
MPS	9.07	4.75					40.9		0.02	126	0.27	10.2	19.5	47%
XYZ	16.0	6.79										9.08	11.0	18%
radial	27.0					-37.3	29.5	14.3	0.12	194	0.15	11.6	14.3	19%
crdbrd	9.75		4.53		7.83		12.0		0.02	209	0.19	14.1	19.2	$\mathbf{27\%}$
Rotated surface	11.9	5.69		0.26						_	_	5.81	7.74	25%
MPS	10.25	3.59					33.3			111	0.29	10.5	19.0	45%
XYZ	10.7	7.73		0.40							-0.01	7.36	10.7	32%
radial	19.5	1.91				-44.3	10.6	6.36	0.10	177	0.11	9.98	11.3	12%
crdbrd	9.23	7.90	8.08	-3.01		-9.44	2.72		0.14	139	0.18	12.8	16.6	$\mathbf{23\%}$

Models and Performance

- MAPE Mean Absolute Predicted Error
- MABE Mean Absolute Base Error
- "Improved" 1.0 MAPE/MABE (expressed as percentage)

Greatest improvement for MPS conditions

Condition	$\hat{\beta}_0$	$\hat{\beta}_1$	$\hat{\beta}_2$	\hat{eta}_3	\hat{eta}_4	\hat{eta}_5	\hat{eta}_6	$\hat{\beta}_7$	\hat{eta}_8	\hat{eta}_9	$\hat{\beta}_{10}$	MAPE	MABE	Improved
Fixed surface	13.8	4.69								_	_	6 43	7.64	16%
MPS	9.07	4.75					40.9		0.02	126	0.27	10.2	19.5	47%
XYZ	16.0	6.79										9.08	11.0	18%
radial	27.0					-37.3	29.5	14.3	0.12	194	0.15	11.6	14.3	19%
crdbrd	9.75		4.53		7.83		12.0		0.02	209	0.19	14.1	19.2	27%
Rotated surface	11.9	5.69		0.26						_	_	5.81	7.74	25%
MPS	10.25	3.59					33.3			111	0.29	10.5	19.0	45%
XYZ	10.7	7.73		0.40							-0.01	7.36	10.7	32%
radial	19.5	1.91				-44.3	10.6	6.36	0.10	177	0.11	9.98	11.3	12%
crdbrd	9.23	7.90	8.08	-3.01		-9.44	2.72		0.14	139	0.18	12.8	16.6	$\mathbf{23\%}$

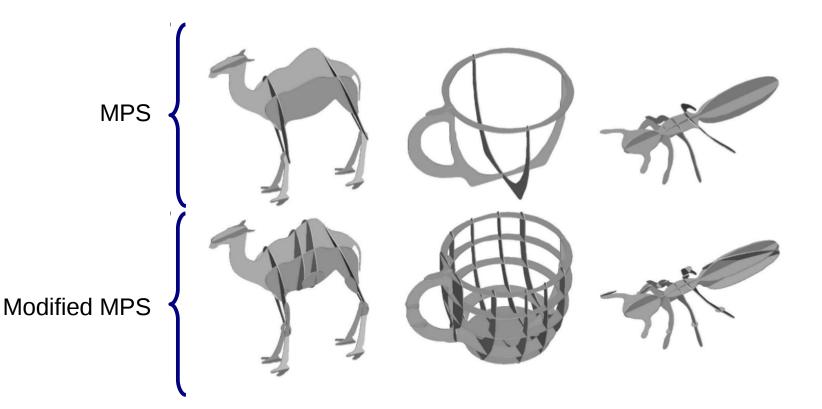
- MAPE Mean Absolute Predicted Error
- MABE Mean Absolute Base Error
- "Improved" 1.0 MAPE/MABE (expressed as percentage)
- Greatest improvement for MPS conditions
- Significant improvements (16%, 25%) for surface conditions

	Condition	\hat{eta}_0	\hat{eta}_1	$\hat{\beta}_2$	\hat{eta}_3	\hat{eta}_4	\hat{eta}_5	\hat{eta}_6	$\hat{\beta}_7$	$\hat{\beta}_8$	\hat{eta}_9	\hat{eta}_{10}	MAPE	MABE	Improved
]	Fixed surface	13.8	4.69								_	_	6.43	7.64	16%
	MPS	9.07	4.75					40.9		0.02	126	0.27	10.2	19.5	47%
	XYZ	16.0	6.79										9.08	11.0	18%
	radial	27.0					-37.3	29.5	14.3	0.12	194	0.15	11.6	14.3	19%
	crdbrd	9.75		4.53		7.83		12.0		0.02	209	0.19	14.1	19.2	27%
Ro	tated surface	11.9	5.69		0.26						-	-	5.81	7.74	25%
	MPS	10.25	3.59					33.3			111	0.29	10.5	19.0	45%
	XYZ	10.7	7.73		0.40							-0.01	7.36	10.7	32%
	radial	19.5	1.91				-44.3	10.6	6.36	0.10	177	0.11	9.98	11.3	12%
	crdbrd	9.23	7.90	8.08	-3.01		-9.44	2.72		0.14	139	0.18	12.8	16.6	23%

- MAPE Mean Absolute Predicted Error
- MABE Mean Absolute Base Error
- "Improved" 1.0 MAPE/MABE (expressed as percentage)
- Greatest improvement for MPS conditions
- Significant improvements (16%, 25%) for surface conditions
- Least improvement for radial conditions

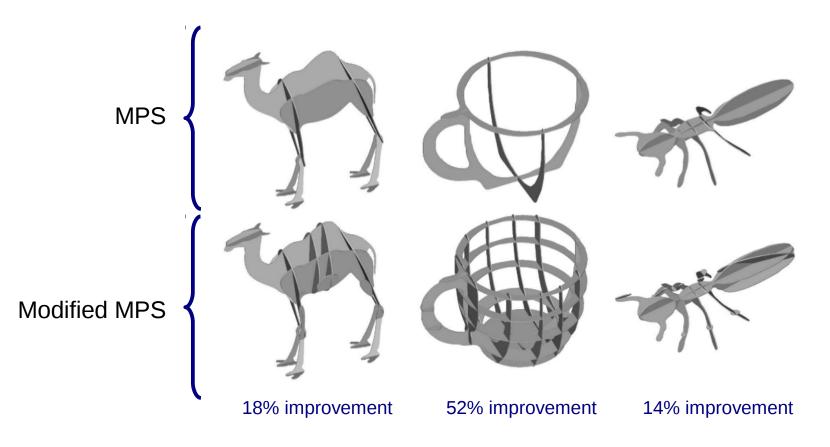
Condition	$\hat{\beta}_0$	$\hat{\beta}_1$	$\hat{\beta}_2$	\hat{eta}_3	\hat{eta}_4	\hat{eta}_5	\hat{eta}_6	\hat{eta}_7	$\hat{\beta}_8$	\hat{eta}_9	$\hat{\beta}_{10}$	MAPE	MABE	Improved
Fixed surface	13.8	4.69								_	-	6.43	7.64	16%
MPS	9.07	4.75					40.9		0.02	126	0.27	10.2	19.5	47%
XYZ	16.0	6.79										9.08	11.0	18%
radial	27.0	•				-37.3	29.5	14.3	0.12	194	0.15	11.6	14.3	19%
crdbrd	9.75		4.53		7.83		12.0		0.02	209	0.19	14.1	19.2	27%
Rotated surface	11.9	5.69		0.26						_	_	5.81	7.74	25%
MPS	10.25	3.59					33.3			111	0.29	10.5	19.0	45%
XYZ	10.7	7.73		0.40							-0.01	7.36	10.7	32%
radial	19.5	1.91		•		-44.3	10.6	6.36	0.10	177	0.11	9.98	11.3	12%
crdbrd	9.23	7.90	8.08	-3.01		-9.44	2.72		0.14	139	0.18	12.8	16.6	23%

Improving planar abstractions


 We used the abstraction distance predictor within our MPS predictive models and incorporated it into the MPS abstraction algorithm*

Condition	\hat{eta}_0	\hat{eta}_1	\hat{eta}_2	\hat{eta}_3	\hat{eta}_4	\hat{eta}_5	\hat{eta}_6	\hat{eta}_7	\hat{eta}_8	\hat{eta}_9	$\hat{\beta}_{10}$	MAPE	MABE	Improved
Fixed surface	13.8	4.69							•		-	6.43	7.64	16%
MPS	9.07	4.75					40.9		0.02	126	0.27	10.2	19.5	47%
XYZ	16.0	6.79										9.08	11.0	18%
radial	27.0					-37.3	29.5	14.3	0.12	194	0.15	11.6	14.3	19%
crdbrd	9.75		4.53		7.83		12.0		0.02	209	0.19	14.1	19.2	27%
Rotated surface	11.9	5.69		0.26					•	_	_	5.81	7.74	25%
MPS	10.25	3.59					33.3			111	0.29	10.5	19.0	45%
XYZ	10.7	7.73		0.40							-0.01	7.36	10.7	32%
radial	19.5	1.91				-44.3	10.6	6.36	0.10	177	0.11	9.98	11.3	12%
crdbrd	9.23	7.90	8.08	-3.01		-9.44	2.72		0.14	139	0.18	12.8	16.6	23%

**Slices: A Shape-proxy Based on Planar Sections* James McCrae, Karan Singh, Niloy Mitra SIGGRAPH Asia, 2011


Improving planar abstractions

 We used the abstraction distance predictor within our MPS predictive models and incorporated it into the MPS abstraction algorithm*

Improving planar abstractions

- We used the abstraction distance predictor within our MPS predictive models and incorporated it into the MPS abstraction algorithm*
- Smaller crowd-sourced study revealed notable improvements

Summary

Key Contribution:

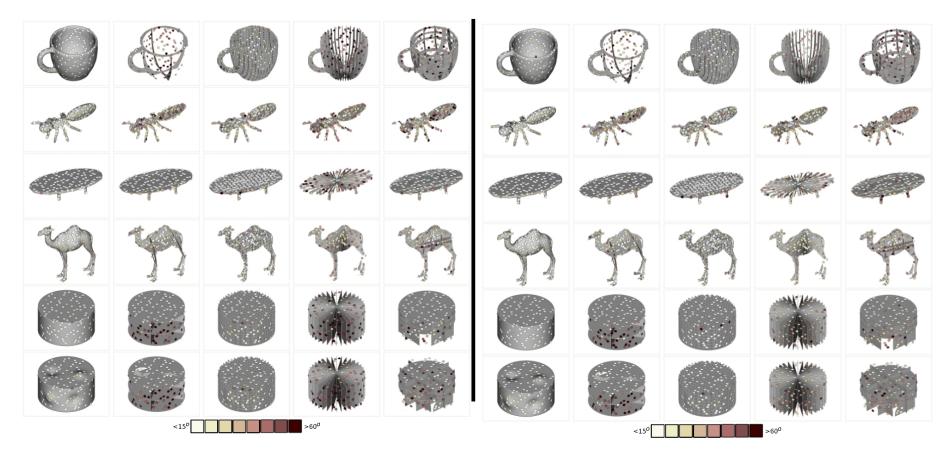
An investigation of the visual perception of surfaces represented by planar abstractions

- Design of large crowd-sourced user study
- Identified a variety of geometric sources of error in analysis
- Predictive model parameters learned from study data, models perform significantly better than base estimates
- Demonstrated predictive models can be used to modify existing planar abstraction algorithms in order to improve surface perception

Acknowledgements

Individuals:

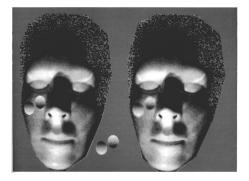
- Vangelis Kalogerakis
- W. John Braun
- Kristian Hildebrand
- Dongming Yan
- Daniela Giorgi


Organizations:

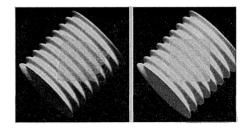
Graphisme, animation et nouveaux médias

Thank You

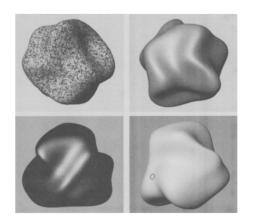
Questions or comments?

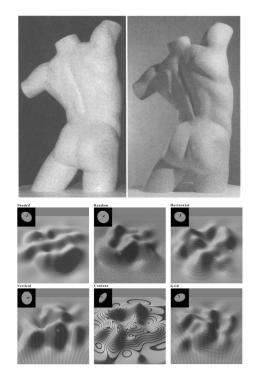

Study data, program code and other resources can be found at: http://www.dgp.toronto.edu/~mccrae/

Extra Slides...

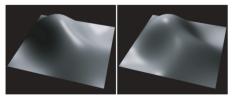


The perception of the visible world James J. Gibson Houghton Mifflin, 1950

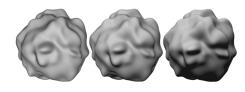

 First formal attempts to study how different types of image structures (lines, gradients, patterns, etc.) inform the human visual system to give perceptual knowledge of 3D shape


Perceiving shape from shading Vilayanur S. Ramachandran Scientific American, 1988

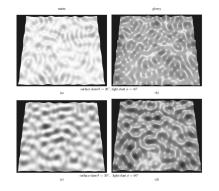
Perception of surface contours and surface shape: from computation to psychophysics David C. Knill Iournal of the Optical Society of America, 1992

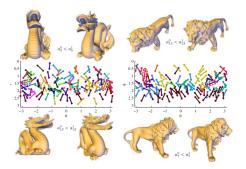


The perception of surface orientation from multiple sources of optical information J. Farley Norman, James T. Todd, Flip Phillips Perception and Psychophysics, 1995



Effects of Changing Viewing Conditions on the Perceived Structure of Smoothly Curved Surfaces James T. Todd, Jan J. Koenderink, Andrea J. van Doorn, Astrid M. L. Kappers Journal of Experimental Psychology, 1996


View Direction, Surface Orientation and Texture Orientation for Perception of Surface Shape Graeme Sweet, Colin Ware Graphics Interface, 2004

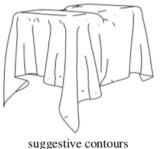


Distortion in 3D shape estimation with changes in illumination Franck Caniard, Roland W. Fleming ACM Applied Perception in Graphics and Visualization, 2007

The Assumed Light Direction for Perceiving Shape from Shading James P. O'Shea, Martin S. Banks, Maneesh Agrawala ACM Applied Perception in Graphics and Visualization, 2008

How Does Lighting Direction Affect Shape Perception of Glossy and Matte Surfaces?

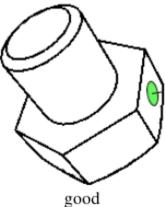
Arthur Faisman, Michael S. Langer ACM Symposium on Applied Perception, 2013 (later this session)

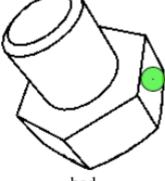

Perceptual models of viewpoint preference

Adrian Secord, Jingwan Lu, Adam Finkelstein, Manish Singh, Andrew Nealen ACM Transactions on Graphics, 2011

Visual Perception of Shape

How well do line drawings depict shape? Forrester Cole, Kevin Sanik, Doug DeCarlo, Adam Finkelstein, Thomas Funkhouser, Szymon Rusinkiewicz, Manish Singh ACM Transactions on Graphics (Proc. SIGGRAPH), 2009


ridges and valleys



artist's drawing

shaded

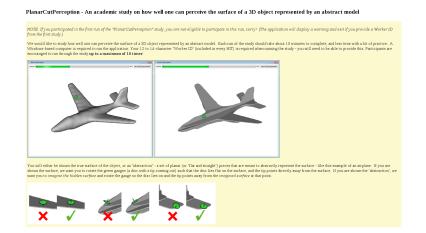
bad

Overview

User Study

- Candidate planar abstractions
- Methodology
- Data collection
- Data verification

Analysis of Results


- Initial analysis
- On the bas-relief ambiguity
- Participant-specific correlations
- Surface-specific correlations
- Abstraction-specific correlations
- Improving correlations

Predicting Error

- Linear models
- Regularization
- Validation
- Performance of linear models
- Improving planar abstractions

Methodology

 Participants on Amazon's "Mechanical Turk" view a webpage with basic instructions, broad description of the task, and software download link

After the 60 gauges have been set, their precision will be evaluated (not being too sloppy or careless). If you fail to meet the conditions, a message will prompt you to re-run the study and try again. Otherwise
message will indicate your success and the study data to submit will be provided (and automatically copied to your clipboard for pasting here.)

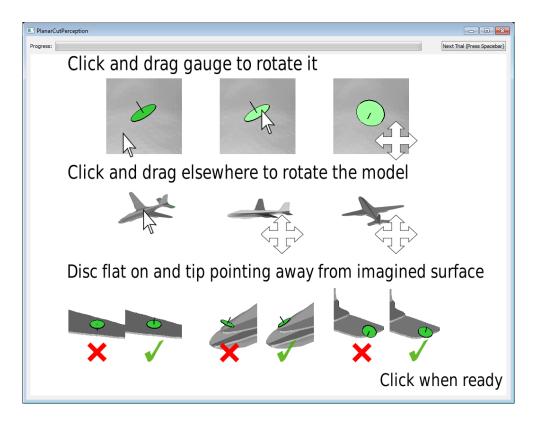
	OM to sey d	ata tu dijibuard
Number 1.1 0.0 <th0.0< th=""> <th0.0< t<="" th=""><th>586(25)2947.588(25)580(5) 0912528/075398865558(2) 85680-550(7)539(2)588 86680-550(7)539(2)-580(2) 86680-550(7)539(2)-580(2) 86680-550(7)539(2)-580(2) 86680-550(2) 10000-520(2)-580(2) 10000-520(2) 1000</th><th></th></th0.0<></th0.0<>	586(25)2947.588(25)580(5) 0912528/075398865558(2) 85680-550(7)539(2)588 86680-550(7)539(2)-580(2) 86680-550(7)539(2)-580(2) 86680-550(7)539(2)-580(2) 86680-550(2) 10000-520(2)-580(2) 10000-520(2) 1000	

Right-click: and paste the study data into the text box at the bottorn of this HIT and press 'Submit' button
 You are encouraged to repeat the study up to 10 times - run the application again and create new data to submit in another HIT!

- To be approved, the Worker ID entered into the study application must match the Worker ID when the HIT is submitted. (Mechanical Turk Worker IDs have 12 to 14 alpha-numeric characters)
 To be approved, you must correctly copy/parte the generated data from the study program in your HIT submission (if the text contains many lines that start with 'Gauge', etc., then you probably copied the data in
- correctly) To be approved another due to each HTT must come from a simpler most data where (locate is caped as from one true of the analy true multiple HTT as the coupler will be rejected to be approved as a simple simp

Copy/paste study data here:

We thank you for your participation in this university study! (HIT #\${participant})


Methodology

- Participants on Amazon's "Mechanical Turk" view a webpage with basic instructions, a description of the task, and a software download link
- Participants first enter their unique *worker ID*, which is used to define conditions (task and representation) for the participant

Enter Mechanical Turk Worker ID	? 🗙
Type or copy/paste in your 13 or 14-charac	ter Worker ID from Mechanical Turk.
1234567890ABCD	
	OK Cancel

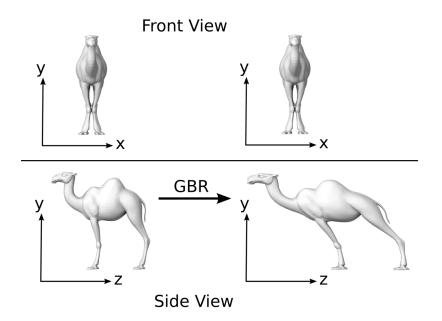
Methodology

- Participants on Amazon's "Mechanical Turk" view a webpage with basic instructions, a description of the task, and a software download link
- Participants first enter their unique *worker ID*, which is used to define conditions (task and representation) for the participant
- Initial instructions describe task and provide examples

Methodology

- Participants on Amazon's "Mechanical Turk" view a webpage with basic instructions, a description of the task, and a software download link
- Participants first enter their unique *worker ID*, which is used to define conditions (task and representation) for the participant
- Initial instructions describe task and provide examples
- Participants set 60 gauges (30 pairs) in total

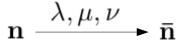
Data Collection


 Data generated from study application is submitted by participant to Mechanical Turk

Click to copy data to dipboard	
NewData 1234567890ABCC 17:24:44:648 5 rotate_view surface	
Gauge 1 0 1 42 0 0 2251 0.216471 0.690551 0.69013 0.216471 0.690551 0.69013	Γ
Gauge 1 0 1 20 0 0 33 0.267072 0.958069 0.103812 0.267072 0.958069 0.103812	
Gauge 1 0 1 91 0 0 33 -0.54347 -0.344459 -0.765498 -0.54347 -0.344459 -0.765498	
Gauge 1 0 1 97 0 0 33 -0.517077 0.754243 -0.404659 -0.517077 0.754243 -0.404659	
Gauge 1 0 1 26 0 0 33 0.466924 -0.0140458 -0.884186 0.466924 -0.0140458 -0.884186	
Gauge 1 0 1 42 0 0 33 -0.270322 -0.280704 -0.92094 -0.270322 -0.280704 -0.92094	
Gauge 1 0 1 20 0 0 33 0.113938 0.849156 -0.515705 0.113938 0.849156 -0.515705	
Gauge 1 0 1 91 0 0 33 0.359853 0.880809 0.307704 0.359853 0.880809 0.307704	

Initial Analysis

- Outliers (removal if mean error with group > 3 standard deviations)
 - One participant with mean error > 120 degrees
 - 4 of 182 participants in total classified as outliers and removed
- Average error
- Average error (for flat models/regions only)
- On the bas-relief ambiguity


$$\mathbf{p} = (x, y, f(x, y)) \xrightarrow{\lambda, \mu, \nu} \mathbf{\bar{p}} = (x, y, \lambda f(x, y) + \mu x + \nu y)$$

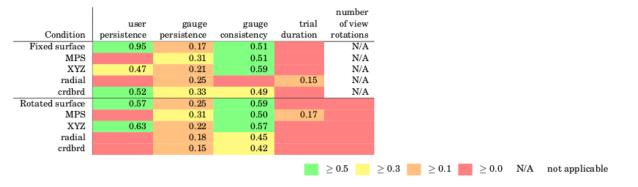
"Generalized Bas-Relief" transform for $\lambda = 1.25, \mu = 0, \nu = -0.5$

Initial Analysis

- Outliers (removal if mean error with group > 3 standard deviations)
 - One participant with mean error > 120 degrees
 - 4 of 182 participants in total classified as outliers and removed
- Average error
- Average error (for flat models/regions only)
- On the bas-relief ambiguity

$$\frac{1}{\lambda} \begin{bmatrix} 1 & 0 & -\mu \\ 0 & 1 & -\nu \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} n_x \\ n_y \\ n_z \end{bmatrix} = \begin{bmatrix} \bar{n}_x \\ \bar{n}_y \\ \bar{n}_z \end{bmatrix}$$

Normal directions are also transformed


Initial Analysis

- Outliers (removal if mean error with group > 3 standard deviations)
 - One participant with mean error > 120 degrees
 - 4 of 182 participants in total classified as outliers and removed
- Average error
- Average error (for flat models/regions only)
- On the bas-relief ambiguity
 - Rotated view task does not require GBR, no depth ambiguity
 - Fixed view task performance comparable to rotated view task
 - Optimal GBR parameters can reduce error > 5 degrees artificially, we opted not to

Average	20.2	36.2	24.3	52.8	38.0
	20.1	34.4	21.0	39.9	41.0

General correlations

Gauge consistency (participant agreement)

Pearson product-moment correlation coefficients (r)

Surface-specific correlations

- Curvature (κ_1 , κ_2 , Gaussian, mean)
- Local thickness
- Medial axis distance
- Centroid distance
- View-normal angle difference

					number						medial		view-norm
	user	gauge	gauge	trial	of view	absolute	absolute	Gaussian	mean	local	axis	centroid	angle
Condition	persistence	persistence	consistency	duration	rotations	κ_1	κ_2	curvature	curvature	thickness	distance	distance	difference
Fixed surface	0.95	0.17	0.51		N/A	0.51	0.42	0.44	0.49		-0.13		-0.17
MPS		0.31	0.51		N/A	0.42	0.26	0.19	0.42	0.49	-0.20	0.23	
XYZ	0.47	0.21	0.59		N/A	0.54	0.42	0.46	0.53		-0.24	0.11	-0.14
radial		0.25		0.15	N/A		-0.14	-0.16		0.39	-0.10	0.28	0.21
crdbrd	0.52	0.33	0.49		N/A	0.46	0.41	0.33	0.46	0.14	-0.16	0.15	
Rotated surface	0.57	0.25	0.59			0.60	0.50	0.53	0.57		-0.21		-0.19
MPS		0.31	0.50	0.17		0.40	0.25	0.18	0.39	0.46	-0.20	0.21	-0.13
XYZ	0.63	0.22	0.57			0.64	0.50	0.56	0.62		-0.28		-0.22
radial		0.18	0.45			0.12			0.11	0.22	-0.16	0.21	0.15
crdbrd		0.15	0.42			0.43	0.37	0.31	0.42		-0.20	0.10	
					≥ 0.5	≥ 0.3	≥ 0.1	≥ 0.0 N/	A not app	licable			

Pearson product-moment correlation coefficients (r)

Abstraction-specific correlations

- Abstraction distance
- Abstraction angle difference

					number						medial		view-norm		abstraction
	user	gauge	gauge	trial	of view	absolute	absolute	Gaussian	mean	local	axis	centroid	angle	abstraction	angle
Condition	persistence	persistence	consistency	duration	rotations	κ_1	κ_2	curvature	curvature	thickness	distance	distance	difference	distance	difference
Fixed surface	0.95	0.17	0.51		N/A	0.51	0.42	0.44	0.49		-0.13		-0.17	N/A	N/A
MPS		0.31	0.51		N/A	0.42	0.26	0.19	0.42	0.49	-0.20	0.23		0.39	0.72
XYZ	0.47	0.21	0.59		N/A	0.54	0.42	0.46	0.53		-0.24	0.11	-0.14	0.13	-0.26
radial		0.25		0.15	N/A		-0.14	-0.16		0.39	-0.10	0.28	0.21	0.20	0.30
crdbrd	0.52	0.33	0.49		N/A	0.46	0.41	0.33	0.46	0.14	-0.16	0.15		0.17	0.43
Rotated surface	0.57	0.25	0.59			0.60	0.50	0.53	0.57		-0.21		-0.19	N/A	N/A
MPS		0.31	0.50	0.17		0.40	0.25	0.18	0.39	0.46	-0.20	0.21	-0.13	0.37	0.72
XYZ	0.63	0.22	0.57			0.64	0.50	0.56	0.62		-0.28		-0.22		-0.35
radial		0.18	0.45			0.12			0.11	0.22	-0.16	0.21	0.15	0.19	0.17
crdbrd		0.15	0.42			0.43	0.37	0.31	0.42		-0.20	0.10			0.43
≥ 0.5 ≥ 0.3 ≥ 0.1 ≥ 0.0 N/A not applicable															

Pearson product-moment correlation coefficients (r)