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Planar Abstractions

How effective are planar abstractions at representing shape?

Input surface Planar abstraction
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*Slices: A Shape-proxy Based on Planar Sections
James McCrae, Karan Singh, Niloy Mitra
SIGGRAPH Asia, 2011
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User Study
5 representations

crdbrd*

*crdbrd: Shape Fabrication by Sliding Planar Slices
Kristian Hildebrand, Bernd Bickel, Marc Alexa
Eurographics, 2012
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User Study
5 representations * 6 models  = 30 different visual stimuli in total
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Methodology

Mechanical Turk participants with a unique worker ID view an 
instructions screen.  Participants adjust 60 gauges (30 pairs).
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User Study
Data Collection

● 178 unique participants
● 1161 runs of the study
● $0.35 paid for each run
● Total of ~70,000 gauge samples

Data Verification
● Participants are greedy (want most money in shortest time/least effort)
● Imagined surface details from planar abstractions leads to errors even 

despite best intentions
● This requires a strategy to tolerate errors arising from honest intent
● “Gauge pairs” verify intent (gauges set at same position should have 
consistent orientation)

Conditions for angle between gauge 
pairs 

● < 30 degrees, 70% of the time
● standard deviation > 5 degrees
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Analysis
Initial Analysis

● Outliers (removal if mean error with group > 3 standard deviations)
● One participant with mean error > 120 degrees
● 4 of 182 participants in total classified as outliers and removed

● Average error 
● Average error (for flat models/regions only)
● On the bas-relief ambiguity

● Does not apply to rotated view task
● Fixed view and rotated view tasks had same performance 
● Applying optimal GBR transform can significantly reduce error 

(often more than 5 degrees) 

Fixed view
Rotated view



Analysis
General correlations

● Gauge consistency (participant agreement)

Pearson product-moment correlation coefficients (r)



Analysis
General correlations

● Gauge consistency (participant agreement) 
● User persistence (a participant's gauge pair settings match)

Pearson product-moment correlation coefficients (r)



Analysis
General correlations

● Gauge consistency (participant agreement) 
● User persistence (a participant's gauge pair settings match)
● Gauge persistence, trial duration, number of view rotations

Pearson product-moment correlation coefficients (r)



Analysis
General correlations

● Gauge consistency (participant agreement) 
● User persistence (a participant's gauge pair settings match)
● Gauge persistence, trial duration, number of view rotations

Pearson product-moment correlation coefficients (r)



Analysis

Pearson product-moment correlation coefficients (r)

Surface-specific correlations
● Curvature (κ1, κ2, Gaussian, mean)



Analysis

Pearson product-moment correlation coefficients (r)

Surface-specific correlations
● Curvature (κ1, κ2, Gaussian, mean)
● Local thickness



Analysis

Pearson product-moment correlation coefficients (r)

Surface-specific correlations
● Curvature (κ1, κ2, Gaussian, mean)
● Local thickness
● Medial axis distance, centroid distance, view-norm angle difference
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Pearson product-moment correlation coefficients (r)

Abstraction-specific correlations
● Abstraction distance
● Abstraction angle difference
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*An Analysis of Transformations
George E. P. Box, David R. Cox
Journal of the Royal Statistical Society, 1964

Improving correlations
● Histograms and Q-Q plots reveal whether regression residuals follow a 

normal distribution
● Box-Cox method* finds optimal power parameter λ to transform 

measurements to improve normality
● For curvature λ=0.25 and medial axis distance λ=2.0

Power transform (λ)
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Predicting Error
● Supervised learning: We use the study data to create a 

predictive model for task error

● Predictors: independent variables, measurements we can 
make at surface points (e.g. curvature, local thickness)

● Response: dependent variable, the outcome – task error 



Predicting Error
● Linear models take the following form:

p – the number of predictors
x – a vector of p predictor measurements
hj – each predictor j's transformation function
    – vector of (p+1) parameters of the linear model



Predicting Error
Regularization

● LASSO* minimizes the L1-norm of 
● Model parameters selected parsimoniously: compromise between few 

predictors and low error of fit

Minimal error choice Parsimonious choice

*Regression shrinkage and selection via the lasso
Robert Tibshirani
Journal of the Royal Statistical Society, 1996



Predicting Error
Regularization

● LASSO [Tibshirani 1996] minimizes the L1-norm of 
● Model parameters selected parsimoniously: compromise between few 

predictors and low error of fit

Validation
● We perform k-fold cross-validation (for k=10)

● The n input samples divided into 10 equally sized folds
● Linear model trained using samples from 9 folds, last used for testing
● Repeat 10 times, using each fold for testing once

● Estimated prediction error – the mean absolute error over all 10 folds
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Predicting Error
Models and Performance

● MAPE – Mean Absolute Predicted Error
● MABE – Mean Absolute Base Error
● “Improved” - 1.0 – MAPE/MABE (expressed as percentage)

● Greatest improvement for MPS conditions
● Significant improvements (16%, 25%) for surface conditions
● Least improvement for radial conditions



Predicting Error
Improving planar abstractions

● We used the abstraction distance predictor within our MPS 
predictive models and incorporated it into the MPS abstraction 
algorithm*

*Slices: A Shape-proxy Based on Planar Sections
James McCrae, Karan Singh, Niloy Mitra
SIGGRAPH Asia, 2011
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Predicting Error
Improving planar abstractions

● We used the abstraction distance predictor within our MPS 
predictive models and incorporated it into the MPS abstraction 
algorithm*

● Smaller crowd-sourced study revealed notable improvements

MPS

Modified MPS

18% improvement 52% improvement 14% improvement



Summary

Key Contribution: 

An investigation of the visual perception of 
surfaces represented by planar abstractions

● Design of large crowd-sourced user study
● Identified a variety of geometric sources of error in analysis
● Predictive model parameters learned from study data, models 

perform significantly better than base estimates
● Demonstrated predictive models can be used to modify existing 

planar abstraction algorithms in order to improve surface 
perception
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Thank You

Questions or comments?

Study data, program code and other resources can be found at:
http://www.dgp.toronto.edu/~mccrae/
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Visual Perception of Shape

The perception of the visible world
James J. Gibson
Houghton Mifflin, 1950

● First formal attempts to study how different types of 
image structures (lines, gradients, patterns, etc.) inform 
the human visual system to give perceptual knowledge 
of 3D shape



Visual Perception of Shape

Perceiving shape from shading
Vilayanur S. Ramachandran
Scientific American, 1988

Perception of surface contours and 
surface shape: from computation to 
psychophysics
David C. Knill
Journal of the Optical Society of America, 1992

The perception of surface orientation 
from multiple sources of optical 
information
J. Farley Norman, James T. Todd, Flip Phillips
Perception and Psychophysics, 1995
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Effects of Changing Viewing Conditions 
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Graeme Sweet, Colin Ware
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Distortion in 3D shape estimation with 
changes in illumination
Franck Caniard, Roland W. Fleming
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The Assumed Light Direction for 
Perceiving Shape from Shading
James P. O'Shea, Martin S. Banks, Maneesh Agrawala
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Perceptual models of viewpoint 
preference
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Visual Perception of Shape

How well do line drawings depict shape?
Forrester Cole, Kevin Sanik, Doug DeCarlo, Adam Finkelstein, 
Thomas Funkhouser, Szymon Rusinkiewicz, Manish Singh
ACM Transactions on Graphics (Proc. SIGGRAPH), 2009
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Predicting Error
● Linear models
● Regularization
● Validation
● Performance of linear models
● Improving planar abstractions
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User Study
Methodology

● Participants on Amazon's “Mechanical Turk” view a webpage with basic 
instructions, a description of the task, and a software download link

● Participants first enter their unique worker ID, which is used to define 
conditions (task and representation) for the participant

● Initial instructions describe task and provide examples
● Participants set 60 gauges (30 pairs) in total

Data Collection
● Data generated from study application is submitted by participant to 

Mechanical Turk
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Analysis of Results
Initial Analysis

● Outliers (removal if mean error with group > 3 standard deviations)
● One participant with mean error > 120 degrees
● 4 of 182 participants in total classified as outliers and removed

● Average error 
● Average error (for flat models/regions only)
● On the bas-relief ambiguity

● Rotated view task – does not require GBR, no depth ambiguity
● Fixed view task – performance comparable to rotated view task
● Optimal GBR parameters can reduce error > 5 degrees artificially, we 

opted not to
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Pearson product-moment correlation coefficients (r)



Analysis of Results

Pearson product-moment correlation coefficients (r)

Surface-specific correlations
● Curvature (κ1, κ2, Gaussian, mean)
● Local thickness
● Medial axis distance
● Centroid distance
● View-normal angle difference
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Pearson product-moment correlation coefficients (r)

Abstraction-specific correlations
● Abstraction distance
● Abstraction angle difference


