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Abstract

Extracting semantically related parts across models remains challenging, especially without supervision. The
common approach is to co-analyze a model collection, while assuming the existence of descriptive geometric
features that can directly identify related parts. In the presence of large shape variations, common geometric
features, however, are no longer sufficiently descriptive. In this paper, we explore an indirect top-down approach,
where instead of part geometry, part arrangements extracted from each model are compared. The key observation
is that while a direct comparison of part geometry can be ambiguous, part arrangements, being higher level
structures, remain consistent, and hence can be used to discover latent commonalities among semantically related
shapes. We show that our indirect analysis leads to the detection of recurring arrangements of parts, which are
otherwise difficult to discover in a direct unsupervised setting. We evaluate our algorithm on ground truth datasets
and report advantages over geometric similarity-based bottom-up co-segmentation algorithms.

1. Introduction

... that form ever follows function. This is the law.
— L. Sullivan (1896)

Large geometric differences often hide semantic simi-
larity across many related objects. Discovering such la-
tent commonalities reveals interesting object characteristics
along with their unifying semantic connections, and can
greatly benefit model exploration and content creation. Con-
sistent cross-model part level decompositions are rarely ex-
plicitly encoded in model collections, necessitating auto-
matic analysis to reveal such connections.

In recent years, various approaches have been developed
to collectively analyze model sets. Such co-analysis algo-
rithms either assume access to labeled training sets to facili-
tate supervised learning [KHS10,LMS13], or heavily rely on
geometric similarity across the models for successful analy-
sis [HFL12, HZG∗12, KLM∗12, KLM∗13]. In the presence
of significant geometric and topological variations, we still
lack appropriate algorithms to automatically analyze col-
lections of semantically related objects. For example, we
want to link consistent parts across the chairs in Figure 1-
top, which is still beyond the realm of state-of-the-art purely
geometry-based methods (see Table 1).

We observe that certain patterns in the form of arrange-
ments among object parts are intrinsic to object characteris-
tics and recur across models belonging to semantically re-
lated shape collections (e.g., legs support chair seats in typ-
ical part configurations). Discovering such patterns requires
identifying what are the parts, how they are arranged, and
how they correspond across the models. Our main observa-

tion is that although part geometries can significantly vary
across related models, their spatial arrangements (which we
refer to as part arrangements) remain consistent, and hence
can be used to establish part correspondence.

In particular, given a set of multi-component models in
a shape collection, our goal is to group the input compo-
nents to form object parts, whose consistency links to inter-
esting and meaningful semantics across model collections.
For example, in Figure 2, the relative arrangement of wheels,
frames, handles, seats is discovered, eventually leading to
consistent part correspondence across the models. Note that
regions of the models can go unclaimed (shown in gray).

We focus on man-made objects as commonly found in
online 3D repositories. Such models are typically non-
manifold, come in multi-components, and contain large ge-

Figure 1: We present a top-down indirect analysis to dis-
cover corresponding parts (bottom) across objects, even
with significant geometric and topological differences (top).
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part arrangement recurring partsinput

Figure 2: Starting from unlabeled models (left), we discover
recurring part arrangements (middle) and in turn extract
corresponding parts, even in presence of significant geomet-
ric and topological variations (right). Unassigned compo-
nents are indicated in gray.

ometric differences. A direct bottom-up approach would be
to create a set of possible parts for each model, and then,
‘cluster’ the parts across the different models. However, due
to large geometric differences, typical geometric shape de-
scriptors are not sufficiently descriptive to facilitate reli-
able clustering or grouping (see Table 1). Alternatively, one
could try to directly solve for point-to-point correspondence,
which can be ambiguous for models with large geometric
differences (see [vKZHCO11]).

Instead, we propose an indirect analysis. First, we group
different components from each model to form candidate
parts. Parts from the same model are then combined to form
different spatial arrangements. We focus on pairs of parts
or simply pair arrangements (PA) as the basic unit of ar-
rangement. Although we cannot compare parts from differ-
ent models; we can, however, compare PA-s from different
models, without establishing explicit part correspondence
(see Figure 3). The information is then propagated down to
compare segments, both within and across models. Multi-
ple such PA-s, in turn, reveal larger consistent part arrange-
ments (see Figure 2). Finally, in a gather stage, the infor-
mation is accumulated to reveal recurring part arrangements
and establish part correspondence.

We tested our algorithm on a range of man-made ob-
ject collections with significant geometric differences. To the
best of our knowledge, we are the first to demonstrate that an
indirect, unsupervised analysis working on abstracted part

arrangements can reveal interesting substructures in model
collections. We created a benchmark consisting of models
with semantic parts manually marked, and used it to com-
pare our algorithm with state-of-the-art alternatives. In sum-
mary, we formulate the problem of co-analysis of a shape
collection as discovering recurring part arrangements; de-
sign an unsupervised algorithm based on a novel indirect
top-down analysis of part arrangements to reveal part corre-
spondence; and evaluate the algorithm on a range of publicly
available shape collections of man-made objects.

2. Related Work

Shape analysis. In order to create novel yet useful shapes
from existing models, it is often desirable to have a semantic
understanding of the source objects. Researchers have long
aimed at inferring such information from geometry alone.
For example, Fu et al. [FCODS08] infer upright orienta-
tion from a given model; iWires [GSMCO09] and followup
efforts [XZCOC12, ZCOM13] analyze inter- and intra-part
geometric relations for smart object manipulation and cre-
ation; Bokeloh et al. [BWS10] extract partial symmetry in-
formation towards inverse procedural modeling; encoding a
hierarchy of symmetrically related parts in individual mod-
els [WXL∗11] or in model collections [vKXZ∗13]; Kaloger-
akis et al. [KCKK12] learn a probabilistic distribution over
a part-based model encoding multiple object styles, part car-
dinalities, and part placements, and use it for shape synthe-
sis. Such methods either work on isolated models (hence, no
variations across models), or assume input/training models
to have consistent partitioning and part annotations, or rely
on geometric features for correspondences.

As humans, we categorize objects into semantically
meaningful parts, and classify their parts based on their
use [FSH11,LMS13]. Can we do the same computationally?
Grabner et al. [GGVG11] investigate the intriguing question
of ‘what makes a chair a chair’. Our goal is also to extract
semantic structure, without access to tagging or semantic
groups, purely based on input geometry.

Co-analysis of model collections. Compared to traditional
analysis of individual shapes, multiple shapes offer richer
information regarding what changes and what remains in-
variant across related shapes. Attene et al. [ARSF09] pro-
posed the “ShapeAnnotator" to support interactive segmen-
tation and annotation of 3D models, organizing them in a
shape ontology to demonstrate applications in both virtual
modeling and physical prototyping. Later, Golovinskiy and
Funkhouser [GF09] presented an automatic approach that
uses pairwise rigid alignment between models to establish
correspondence and extract consistent segmentation. Subse-
quent improvements continue to rely on pairwise rigid align-
ments and then diffuse the reliable alignment information
regularized by loop constraints to obtain improved corre-
spondence assignment [NBCW∗11, HZG∗12, KLM∗12].
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Figure 3: Starting from multi-component models, we construct their relation graphs (see Section 4.1), which are then used to
group components to form candidate parts. Non-conflicting pairs of such parts form pair arrangements (PA) (e.g., si

1 is formed
by (pi

1, pi
3)). Our main observation is as follows: while parts across different models are difficult to compare in the absence of

any suitable correspondence (e.g., how to compare pi
1 to p j

1?); pairs of parts, i.e., PA-s can be directly compared across models,
and in turn be used to reveal similarity between parts across different models. We compare PA-s in a descriptor space; e.g., see
the similarity matrix on the right; elements with higher values indicating higher similarity. Finally, recurring parts and their
arrangements (see Figure 11(e)) are detected, often revealing semantic connections.

Many model collections exhibit strong geometric simi-
larity across the input shapes among their corresponding
parts. Hence, researchers have proposed geometric feature-
based clustering to define consistency among parts [KHS10,
XLZ∗10, HKG11, SvKK∗11, vKTS∗11, HFL12, WAvK∗12,
MXLH13]; extract low degree of freedom deforma-
tion linking different models for novel model explo-
ration [OLGM11]; perform co-abstraction [YK12]; detect
curve style [LZW∗13] for co-analysis of shapes; and have
employed geometric features and context to learn semantic
correspondence using an SVM classifier [LMS13]. Recently,
Kim et al. [KLM∗13] learn a part-based deformable model
by simultaneously optimizing for part decomposition, part
correspondence, and a low complexity deformation model
that best encodes input models.

Since the methods rely on part-level geometry to be con-
sistent (and hence corresponding descriptors being consis-
tent), they fail to reveal interesting relations across mod-
els under significant geometric variations. Specifically, the
methods expect sufficient model pairs to be very similar ge-
ometrically in terms of size, orientation, etc. in order to reli-
ably ‘propagate’ correspondence (see Section 5).

3. Overview

Starting from models from shape collections (e.g., Prince-
ton Shape Benchmark, Trimble 3D warehouse, etc.), our
goal is to group input components of models to reveal re-
curring parts and their arrangements. Since the models have
large geometric variations, we look at relations (e.g., sym-
metry, contact) to reveal semantic consistency and not ge-
ometric consistency of the parts. (In the rest of the text, we
refer to the different components from a model as segments.)
For each model, based on their relations, we construct a set
of possible groupings of segments to form candidate parts,

where each part is a connected subgraph of the relation-
graph obtained from the initial multi-component models (see
Section 4.1). If we can now compare parts coming from dif-
ferent models, we can discover a consistent pattern of part
arrangements. However, in the absence of part-level corre-
spondence, directly comparing them across different mod-
els is difficult (see Figures 1 and 3). We have an interleaved
problem: in order to compare part arrangements we have to
first determine what are the parts; while, relevance of parts
is determined by consistency among their arrangements.

We take an indirect approach. Candidate parts from within
models are grouped as model substructures to encode rela-
tive geometric arrangement. We consider pairs of parts (i.e.,
a PA) as the smallest non-trivial arrangement that reveals
shape structure. As a key enabler, PA-s can be efficiently
encoded and compared across different models without re-
quiring any correspondence information. In Section 4.2, we
describe how we create, encode, and compare PA-s from dif-
ferent models to form the PA-similarity matrix M1. Then,
by accumulating information from M1, we define a part-
similarity matrix M2 to compare parts across different mod-
els; M2 in turn is used to compare segments to form a
segment-similarity matrix M3. Thus, the cascade M1 ⇒
M2⇒M3 reveals segment-level similarity across models.

Finally, in Section 4.3, we use spectral clustering on M3
to group the segments and then extract recurring parts and
their arrangements using an MRF formulation.

4. Algorithm

Given a set of models {M1,M2, . . .}, we first create candi-
date parts (denoted by set Θi) by grouping initial compo-
nents for each model Mi. The key challenge is to reliably
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Figure 4: Given a multi-component model (left) we cre-
ate a contact-graph to capture pairwise component inter-
actions. Then, based on partial symmetry information, we
group components, forming a simplified relation-graph.

compare two parts pa ∈ Θi and pb ∈ Θ j coming from dif-
ferent models (i.e., Mi 6= M j), without access to point- or
part-level correspondence.

4.1. Generating Initial Candidate Parts

We encode contact and symmetry information in input mod-
els as relation graphs and generate possible part candi-
dates. For each model Mi, we create a graph where each
node represents a component or segment in Mi. Two nodes
are connected by an edge if they are in contact (see also
[MYY∗10]). Specifically, for each pair of segments, we
compute the smallest distance between them. If this distance
is less than a threshold α, we consider the segments to be in
contact (α = 0.01 of the model’s bounding box diagonal).

We assume that the input models have a consistent upright
orientation (as commonly found in Trimble 3D warehouse
models). Further, we pre-align the models using their PCA
axes as proposed in Zheng et al. [ZCOM13]. Since the input
models are assumed to have upright orientations, we simply
have to decide between a PCA direction flip on the xy-plane
(alternatively [KLM∗12] can also be used).

In order to handle models with different part cardinali-
ties (e.g., chairs with symmetrically arranged four vs. five
legs), we simplify the graph based on symmetry information.
We perform a graph simplification by grouping/merging seg-
ments by progressively collapsing the biggest symmetry
groups [MGP06] if their common symmetry plane/axis is
aligned to the upright direction (see Figure 4). Any resulting
duplicate edges are removed (see also [KCKK12]).

Man-made models coming from public repositories typ-
ically have many small and spurious segments (e.g., a car
model can have many small bolts, each as a separate compo-
nent). This leads to an unnecessarily large number of seg-
ments. Using a simple heuristic, we address the issue by
removing the small nodes (by volume), while updating the
graph connectivity. Specifically, if nodes ni and n j both share
a direct connection with a small node nk; we introduce an
edge ei j (unless already present), while removing the node
nk and edges eik,e jk. We remove such small nodes one at a
time, removing the smallest node in the current iteration, and
stopping when each of the remaining nodes’ volume is more
than 1-2% of the model’s bounding box volume.

part

pair arrangement invalid PA

invalid part

B2

B1

pap

segment

pbp

Figure 5: Starting from a model, we first generate a set of
valid candidate parts, which are then grouped together in
pairs to form pair arrangements (PA).

We call the simplified graph the relation-graph with each
of its connected subgraphs (i.e., set of segments) forming
a valid part. Figure 5-top shows a few examples; the high-
lighted part is invalid as the corresponding subgraphs are not
connected by any direct edge in the relation-graph. In the
end, for each model Mi, we have its relation-graph and a set
of candidate parts.

4.2. Comparing Candidate Parts

Creating pair arrangements (PA-s). First, we extract ar-
rangements of parts within a model. We use pairs of parts
as the smallest unit of arrangement. Given a set of candidate
parts Θi for a model Mi, not all pairs of parts, however, are
useful (see Figure 5). Specifically, we form pair arrange-
ments (PA) using a pair of parts sab := (pa, pb) such that
pa, pb ∈ Θi and (i) the subgraphs corresponding to the pair
of parts in the original relation-graph of Mi are connected
by (at least) a direct edge; and (ii) the set of segments of the
parts are disjoint. For example, in Figure 5 the bottom-right
figure shows an invalid PA that violates condition #(i). Note
that the PA-s are only comprised of candidate parts from
the same model and thus trivially have the same coordinate
frame. We next define a descriptor to characterize the spatial
arrangement of parts in such PA-s.

PA similarity matrix M1. Our motivation is to effectively
differentiate between PA-s with a different arrangement of
parts. One simple solution would be to compute a signature
based on the geometry of the underlying parts. For example,
we can compute a shape distribution [OFCD02] correspond-
ing to the union of the parts in a PA. However, since our
focus is to characterize part arrangements rather than part
geometries, such an approach is not suitable (see Figure 6).
The key is to ignore small-scale geometric variations and
instead focus on how the parts are arranged. We propose a
simple descriptor to do so.

c© 2014 The Author(s)
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Given PA sab := (pa, pb), we compute the bounding boxes
of its component parts. Note that we compute axis-aligned
bounding boxes instead of oriented bounding boxes since at
this stage the models are already axis-aligned. Based on the
relative positions (along upright direction) of the centroids
of pa and pb, we name their bounding boxes as B1 and B2,
with B1 denoting the upper box. We define the descriptor for
PA sab using the set of pairwise distances between vertices
of B1 and B2. Specifically,

S(sab) := {‖vi(B
1)−v j(B

2)‖} (1)

for i, j ∈ [0,7] going over the eight vertices vi of each bound-
ing box. (Note that we can select any consistent but fixed
ordering among the vertices.) Finally, to account for scale
variations, we normalize the descriptor using its Euclidean
norm as: S(sab)←S(sab)/‖S(sab)‖.

In Figure 6, we compare the proposed spatial arrangement
descriptor to shape distribution (computed using a uniform
set of 10K points per PA with 64 histogram bins and aver-
aged over 5 runs) on a small example. In each case, we com-
puted descriptors for a set of 69 PA-s extracted from a set
of three airplane models, computed their pairwise distances,
and embedded the distances to 2D using multi-dimensional
scaling (MDS). Our proposed descriptor by focusing on PA-
s over the geometry of the parts can more reliably cluster
similar arrangements (arrangement of orange/blue boxes in
this example), while differentiating between different ones.

We construct a PA similarity matrix M1 to store the pair-
wise similarity between all pairs of PA-s coming from dif-
ferent models (i.e., Mi 6= M j). Note that the number of
columns/rows in M1 is equal to the total number of PA-
s across all the input models. Specifically, given two PA-s
sab ∈Mi and scd ∈M j, we define the corresponding similar-
ity matrix entry in M1 as exp(−‖S(sab)−S(scd)‖2/2σ

2),

Figure 6: We design a simple descriptor for PA-s, based on
the relative arrangement of the bounding boxes of their in-
dividual parts. A candidate part (e.g., fuselage) can partic-
ipate in different PA-s and thus appear in multiple regions
of the descriptor space. The sub-figures show MDS mapping
to 2D applied to the pairwise PA distances computed using
the proposed descriptor (left) and shape distribution (right).
Focusing on part arrangements over part geometries reveals
high-level similarity.

i.e., higher distances getting lower similarity values. We set
σ = 0.1.

Alternative descriptors can also be used, e.g., we ex-
perimented with a descriptor that computes the transla-
tion/rotation/scaling (∈ R9) necessary to map B1→ B2, but
found the performance comparable for the repository mod-
els that were mostly axis-aligned. The challenge then was to
relatively weigh distance, angle, and scale.

Part similarity matrix M2. We use the PA similarity ma-
trix M1 to vote for similarity among corresponding candi-
date parts coming from different models. We encode the
similarity as the part-similarity matrix M2 with number of
rows/columns equal to the total number of parts across all
the models, i.e., ∑i |Θi|. Starting with M2 = 0, we take the
appropriate similarity values from M1 and accumulate them
to form M2. Intuitively, a high entry in M2 indicates a pair
of parts that can be swapped across models, while preserv-
ing their respective PA descriptors, i.e., without disturbing
the resultant arrangement.

For any valid PA-s sab ∈Mi and scd ∈M j with Mi 6= M j,
we have a corresponding entry M1(sab,scd), capturing the
similarity between sab := (pa, pb) and scd := (pc, pd). Now,
in a key enabling step, we are ready to assess the similarity
between pa ↔ pc and pb ↔ pd . Intuitively, if parts can be
swapped without affecting the corresponding PA descriptors,
we expect them to be ‘similar’ and accumulate the evidence.
Note that now similarities are between a pair of parts, but
coming from different models Mi and M j. We simply assign
M2(pa, pc)←M2(pa, pc) +M1(sab,scd) and similarly for
M2(pb, pd). The main observation is that we arrived at these
part similarity values simply relying on pair arrangements.
(Note that we assumed (pa, pb) and (pc, pd) to be relatively
ordered based on corresponding bounding boxes B1, B2 as
defined earlier. If not, we switch the assignments to pa↔ pd
and pb↔ pc.)

Segment similarity matrix M3. Finally, we use the infor-
mation gathered in M2 to construct a similarity matrix M3
(with number of rows/columns equal to the total number
of nodes across all relation-graphs) between pairs of seg-
ments (i.e., initial components) coming from different mod-
els, starting with M3 = 0. However, we cannot directly dis-
tribute the entries from M2 to M3 since different parts can
be made of a different number of segments. We observe that
splitting a part into any two subparts results in one of the
following: (i) at least one invalid subpart, i.e., the nodes are
disconnected in the corresponding relation-graph; (ii) two
subparts where each subpart is a single node (i.e., segment);
(iii) two subparts where one subpart is a part and another is
a segment; or (iv) two smaller parts.

Based on these observations, we propose a recursive al-
gorithm to accumulate part similarity (M2) into M3. For any
pair of parts pa ∈ Mi and pb ∈ M j , we look at the corre-
sponding similarity entry M2(pa, pb). Further, say part pa

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



Zheng. Cohen-Or, Averkiou, Mitra / Recurring Part Arrangement in Shape Collections

has na segments and part pb has nb segments. Then, there are(na
2
)

and
(nb

2
)

different ways of splitting each of the respec-
tive parts into two subparts. We now handle the four cases
listed above.

Say part pa is split into a1 and a2; and similarly part pb
into b1 and b2. Since they have a relative ordering as defined
before, we discuss the groupings of the form (a1,b1) (the
process is repeated for the groupings of the form (a2,b2)).
Type (i) split: We discard splits resulting in any invalid part.
Type (ii) split: If a1 and b1 are both individual segments, we
assign M3(a

1,b1)←M3(a
1,b1)+M2(pa, pb).

Type (iii) split: If only a1 is a single segment and b1 is a part,
we distribute M2(pa, pb) to the corresponding elements of
M3 using a1 and the single segments constituting b1. We dis-
tribute the score based on the relative volume of the segment
in b1 normalized by the total volume of all the segments in
b1. We similarly distribute scores if b1 is a single segment
with a1 being a part.
Type (iv) split: If a1 and b1 are both parts, we select the best
matched splits (based on M1 entries), and then recursively
continue the procedure. Note that in this setting there is an-
other entry M2(a,b) that may also be distributed to the ma-
trix M3, further voting for segment-level similarity.

4.3. Extracting Recurring Parts

Given segment-similarity matrix M3, we directly use spec-
tral clustering to group the segments, both within and across
the models. Thus, for a grouping with k clusters, we get k
groups across all the models, although each model can have
k or fewer such members. Figure 7 shows spectral clusters
for a small set of airplane models yielding groups of fuse-
lage, wings, tail, front wheel, etc.

Our goal now is to select parts, one from each model Mi,
such that the set of selected parts have maximum consistency
across the model collection. Note that since similarity is in-
herited from matrix M1, consistency among parts is based
on consistency among arrangements. Essentially, we have a
labeling problem: For each model Mi, our goal is to select
only one of its parts, i.e., select a label li from the set of all
its parts labeled as {l0

i , l
1
i , . . .}. The selected parts should be

consistent across the model collection. We define unary and
binary terms to quantify this consistency.

The unary term is to impose a hard constraint that a model
selects a part only from its own label set, and not from an-
other model. Thus, E(Mi→ lk

j ) is given equal weight (set to
1) if i = j, and high penalty (set to∞) for i 6= j, for any k.

The joint assignment likelihood term is defined as:
E(Mi→ lk

i ,M j→ ll
j) := exp(−sim(pa, pb)

2) where, pa ∈Θi

denotes the part from Mi corresponding to the label lk
i and

similarly for pb ∈ Θ j from M j. We now describe how to es-
timate sim(pa, pb).

Intuitively, we look at the graphs of pa and pb, and sum

spectral clustering

same group

M3

k = 5

Figure 7: We use standard spectral clustering on M3 to
group the segments, both within and across the different
models. The figure shows oversegmented input models (top)
and the same models after regrouping segments (bottom),
with nodes from the same group colored similarly.

up their edge-to-edge similarity, while matching edges based
on their node colors. We break pa (and pb) into smaller seg-
ments (at least with two nodes), and compare these segments
if their group colors match. These smaller segments are sim-
ply a subset of PA-s of Mi (and M j). For each pa, we se-
lect {s1

a,s
2
a, . . .} from the original PA set of Mi (similarly for

pb). Any selection of the form sa (similarly sb) satisfies two
properties: (i) the segments in sa are contained in pa, i.e.,
sa ⊂ pa; and (ii) if sa = (p1, p2) then the segments in p1 and
p2 should all have a single (group) color, and segments in p2
should all have a second color.

Now based on group index/color between nodes in pa and
pb, for each sk

a we have one (or more) corresponding sk
b.

Hence, we simply define: sim(pa, pb) := ∑k sim(sk
a,s

k
b) =

∑k M1(s
k
a,s

k
b) using the observation that the respective en-

tries are already in M1. Our goal is to solve for the best la-
beling such that:

{li}? := argmin
{li}

∑E(Mi→ lk
j )+∑

i, j
E(Mi→ lk

i ,M j→ ll
j)

(2)
using α-β swap [BK04].

We select the number of clusters by looping through k =
2 : n, with n being the number of the nodes in the relation-
graph. For example, in Figure 7, k = 5 yields the lowest cost
(MRF costs are: 5.7,5.2,5.1,4.5 for k = 2,3,4,5, resp.).

5. Evaluation

Datasets. We tested our algorithm on various datasets of
man-made objects obtained from public repositories (e.g.,
Trimble 3D Warehouse, Princeton Shape Benchmark, and
[XZCOC12]). The raw models came in multi-components
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N=10 N=20 N=40

input models

PA-descriptor space recurring PA-s

Figure 8: PA-s generated from different models get embed-
ded in a descriptor space. PA-s arising from consistent parts
across models share similar location in this space. For visu-
alization, here we map the space to 2D using MDS. As the
number of input models grows (N=10, 20, 40), the recurring
PA-s become increasingly prominent (in darker color) as the
probability of unrelated PA-s coming from different models
ending up at the same descriptor location decreases sharply.

and often contain a large number of spurious components.
We ignore the small components before creating candidate
parts. We assumed the models to have consistent up-vector
and pre-aligned them (see Section 4.1).

Our datasets (see supplementary material) comprised of
different model collections including chairs (39 models),
tables (21 models), battleships (8 models), airplanes (19
models), infant-beds (9 models), etc. Note that for mod-
els with less geometric variations, one should append our
arrangement-based descriptor with a per-part (i.e., geome-
try inside bounding boxes) shape descriptor. This will, for
example, help differentiate between a hollow versus an oc-
cupied box. However, in this paper, we investigate the core
arrangement-based approach, and hence we selected models
with significant geometric and topological variations.

Results. Figures 2, 10, and 11 show consistent part arrange-
ments and parts for various model collections. (Please see
supplementary material for all the results). Even for the same
model collection, different models can have a different num-
ber of parts (e.g., airplanes with/without landing gear), or
certain segments can stay unassigned (shown in gray). Note
the diversity of the datasets, both in terms of geometric and
topological variations. Our algorithm, by mainly focusing on
the arrangement of parts, can detect consistency, and thereby
extract parts and reveal their correspondence across models.
In each case, the part arrangements reveal non-trivial parts.

Figure 9: (Top-to-bottom) Starting from models across dif-
ferent shape collections, our method can still reveal consis-
tent part arrangements and parts.

For example, in the case of the chairs, we discover parts for
back, seat, legs; for the tables, we get top and supporting
legs; for the bicycles, we get wheels, frame, handle, seat; for
the beds, we get frame, back, mattress, pillow; etc.

Since our method ignores low-level geometric details by
abstracting candidate parts by their bounding boxes, our ap-
proach detects consistent part arrangements even among a
mixture of different collections. For example, in Figure 9,
we detect consistent leg and support arrangements among
chairs, tables, sofas, etc. This result can enable new content
creation possibilities by mixing model parts based on their
part arrangement consistency.

Some semantically inconsistent parts as erroneously de-
tected by our algorithm are highlighted in Figure 11. For ex-
ample, when the windscreen and side mirrors are wrongly
labeled as corresponding parts; or the top of a chair back
stays unclaimed; etc.

chair

beach chair

airplane table

swing

toy plane

bicycle

infant bed

bus stop

bed

k=5; N=19

k=5; N=6

k=6; N=10k=8; N=4

k=3; N=39 k=3; N=9

k=4; N=4k=8; N=8

k=2; N=21

k=4; N=6

Figure 10: Different representative part arrangements ex-
tracted for various model collections. Note that our unsuper-
vised analysis relies only on available geometry information
and has no access to part names or additional tagging in-
formation (see also Figure 11). The symbols k and N denote
the number of part clusters and the number of models in the
shape collections, respectively.
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(a) airplane

(b) beach chair

(c) bed

(d) car

(e) chair

(f) infant bed

(g) table

wind shield vs. side mirror

missed top

missed pillowmissed framemissed frame

Figure 11: Consistent part arrangements extracted using our unsupervised algorithm. For each model collection, we show only
a subset of the results showing both the extracted part arrangements and parts. Unclaimed components are in gray (see also
supplementary material).

Comparison. Our goal is to discover consistency in the
space of part arrangements, as well as establish part-level
semantic correspondence. In order to quantitatively assess
such semantic part correspondence, we first setup a manu-
ally annotated ground truth dataset. For four model collec-
tions, we manually grouped the segments in each model into
parts and tagged them with an available part label. Part la-
bels were selected from Wikipedia and were: leg, arm, back,
seat for chair; supporter and bed for infant bed; wings, hori-
zontal tail, vertical tail, landing gear, and body for airplane;
sheet, pillow, front legs, back legs, back frame, front frame
for bed. Note that the raw models came as multi-component
inputs, which satisfy our assumption. For polygon soups, our
method will be less suited.

We compared our algorithm against several state-of-the-
art co-segmentation algorithms on the same dataset (using

the authors’ implementations). Note that although the in-
put requirements are quite different, we did this comparison
mainly to validate our output. With the exception of Kim
et al. [KLM∗13], the rest of the algorithms assume the in-
put to be manifold meshes. Hence, for those algorithms, in
a preprocessing step, we first manually repaired the mod-
els and converted them to manifold meshes (using [LA13]).
Note that most of these methods rely on various geomet-
ric features for bottom-up clustering; or geometric similarity
between certain model pairs, which is then diffused to less
similar models. Instead, we establish part correspondence in
a top-down fashion via extracted repeated part arrangements,
and can ignore fine-level geometric dissimilarity.

For each algorithm output, we manually tagged the fi-
nal parts using the available part labels. We used inter-
model part-correspondence to propagate the labels. Finally,
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Figure 12: Stability of results under different input segmen-
tations. The percentage histograms show the distances be-
tween the discovered and the original part arrangements for
5 datasets, across 100 runs of the two tests. Distance is mea-
sured as the average distance between the corresponding
parts’ bounding box vertices. Notice the examples of chair
and plane where distance is negligible.

we counted the fraction of correct part tags (each segment
gets one tag) to measure accuracy. For the preprocessed
manifold models, we projected the face tags to their parent
input models. Table 1 presents a summary of the compari-
son. In many cases, even on manifold meshes, clustering in
the geometric feature space simply failed – we mark them
by ‘×’.

Table 1: Semantic segmentation accuracy against manually
annotated groundtruth labeling across different algorithms.

Class Kim’13 Wang’12 Hu’12 Huang’12 ours
chair 0.59 0.69 0.30 0.83 0.96
bed 0.25 0.27 × 0.65 0.91
inf. bed 0.53 0.36 0.61 0.37 0.71
airplane 0.52 0.36 × 0.58 0.94

Robustness. Our algorithm relies on the input over-
segmentations. We performed two tests to evaluate the sta-
bility of the algorithm on varying input segmentations. (Note
that we cannot handle input as polygon soups due to com-
putational complexity, and also due to degenerate config-
urations.) In the first test (#a), we selected 50% of the in-
put models at random and ran our algorithm on such selec-
tions. For each model family, we compared the results across
100 random runs and quantitatively evaluated the closeness
of the recovered parts with the base results. In the second
test (#b), we selected 70% of the input models at random and
independently split their segments (10-20%) also at random,
and compared the stability of the results across 100 runs. In
both tests, we found the discovered parts to be stable with
respect to (moderate) variations in initial partitioning (see
Figure 12). In most cases, the variations in the extracted part
arrangements are marginal.

User study. We hypothesize that certain arrangements of
parts are intrinsic to a given type of object, and these are ex-
tracted by our algorithm. To test this, we conducted a user
study using a selection of shapes from our datasets (air-
plane, bed, car, chair, table). First, bounding boxes of the
corresponding (extracted) part arrangements were shown in
random order. Users were asked to recognize what type of
shape these abstract boxes represent. Second, the same part
arrangements were shown in a different random order, but
this time the user had eleven options to choose from, drawn
from the names of all datasets used in this paper.

136 users (age range 18-55 years) participated in the user
study, with 74% being male and 62% having some computer
graphics experience. Even in the first step, users were able to
correctly identify airplane (93%), bed (100%), chair (99%)
and table (99%), while they failed to recognize car reliably
(35%). In the second stage, not surprisingly, the recognition
success was slightly higher.

Timing. The complexity of our algorithm is O(N3), where
N is the size of M j=1,2,3, which strongly depends on the
number of nodes in the relation-graph as the size of ma-
trix M1 depends on it. In our examples, the typical num-
ber of nodes in the relation-graphs is less than 15, e.g., for
the airplanes and the cars it is around 10. While the typical
number of PA-s was a few dozens for sparse graphs, it went
up to a few hundreds for complex graphs with loops (e.g.,
bikes, toy-planes). The corresponding running times were
a few seconds to 2-5 minutes (see also demo) for a single
core implementation. Most example model collections took
less than two minutes to process, as their relation-graphs are
sparse. However, for complex datasets such as bike, car, and
bed, it took about 5 minutes.

Limitations. Our algorithm suffers from the following lim-
itations: (i) while our method assumes access to man-made
models with multiple components, we can not handle poly-
gon soups or a single connected manifold mesh or raw
scanned point clouds; and (ii) since we search for all pos-
sible part arrangements, we run into scalability challenges
for models with many spurious components or model col-
lections with many models.

6. Conclusions and Future Work

We presented an unsupervised algorithm to extract consis-
tent parts and their arrangements in model collections of
semantically related shapes. In a top-down approach, ar-
rangements of parts are compared across different mod-
els and the findings are then diffused to recover consistent
parts across the different models. We evaluated our approach
on a range of models with large geometric and topologi-
cal variations, and compared our results with state-of-the-art
co-segmentation methods, using manually-annotated bench-
mark datasets.
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In the future, we would explore higher order part group-
ings involving triplets or quadruplets of parts. Further, the
extracted parts along with their correspondence can be used
for model synthesis while preserving discovered part ar-
rangements to realize large geometric/topological changes.
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