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Abstract

Extracting semantically related parts across models remains challenging, especially without supervision. The
common approach is to co-analyze a model collection, while assuming the existence of descriptive geometric
features that can directly identify related parts. In the presence of large shape variations, common geometric
features, however, are no longer sufficiently descriptive. In this paper, we explore an indirect top-down approach,
where instead of part geometry, part arrangements extracted from each model are compared. The key observation
is that while a direct comparison of part geometry can be ambiguous, part arrangements, being higher level
structures, remain consistent, and hence can be used to discover latent commonalities among semantically related
shapes. We show that our indirect analysis leads to the detection of recurring arrangements of parts, which are
otherwise difficult to discover in a direct unsupervised setting. We evaluate our algorithm on ground truth datasets
and report advantages over geometric similarity-based bottom-up co-segmentation algorithms.

1. Introduction

... that form ever follows function. This is the law.
— L. Sullivan (1896)

Large geometric differences often hide semantic simi-
larity across many related objects. Discovering such la-
tent commonalities reveals interesting object characteristics
along with their unifying semantic connections, and can
greatly benefit model exploration and content creation. Con-
sistent cross-model part level decompositions are rarely ex-
plicitly encoded in model collections, necessitating auto-
matic analysis to reveal such connections.

In recent years, various approaches have been developed
to collectively analyze model sets. Such co-analysis algo-
rithms either assume access to labeled training sets to facili-
tate supervised learning [KHS10,LMS13], or heavily rely on
geometric similarity across the models for successful analy-
sis [HFL12, HZG⇤12, KLM⇤12, KLM⇤13]. In the presence
of significant geometric and topological variations, we still
lack appropriate algorithms to automatically analyze col-
lections of semantically related objects. For example, we
want to link consistent parts across the chairs in Figure 1-
top, which is still beyond the realm of state-of-the-art purely
geometry-based methods (see Table 1).

We observe that certain patterns in the form of arrange-
ments among object parts are intrinsic to object characteris-
tics and recur across models belonging to semantically re-
lated shape collections (e.g., legs support chair seats in typ-
ical part configurations). Discovering such patterns requires
identifying what are the parts, how they are arranged, and
how they correspond across the models. Our main observa-

tion is that although part geometries can significantly vary
across related models, their spatial arrangements (which we
refer to as part arrangements) remain consistent, and hence
can be used to establish part correspondence.

In particular, given a set of multi-component models in
a shape collection, our goal is to group the input compo-
nents to form object parts, whose consistency links to inter-
esting and meaningful semantics across model collections.
For example, in Figure 2, the relative arrangement of wheels,
frames, handles, seats is discovered, eventually leading to
consistent part correspondence across the models. Note that
regions of the models can go unclaimed (shown in gray).

We focus on man-made objects as commonly found in
online 3D repositories. Such models are typically non-
manifold, come in multi-components, and contain large ge-

Figure 1: We present a top-down indirect analysis to dis-
cover corresponding parts (bottom) across objects, even
with significant geometric and topological differences (top).
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Given PA sab := (pa, pb), we compute the bounding boxes
of its component parts. Note that we compute axis-aligned
bounding boxes instead of oriented bounding boxes since at
this stage the models are already axis-aligned. Based on the
relative positions (along upright direction) of the centroids
of pa and pb, we name their bounding boxes as B1 and B2,
with B1 denoting the upper box. We define the descriptor for
PA sab using the set of pairwise distances between vertices
of B1 and B2. Specifically,

S(sab) := {kvi(B
1)�v j(B

2)k} (1)

for i, j 2 [0,7] going over the eight vertices vi of each bound-
ing box. (Note that we can select any consistent but fixed
ordering among the vertices.) Finally, to account for scale
variations, we normalize the descriptor using its Euclidean
norm as: S(sab) S(sab)/kS(sab)k.

In Figure 6, we compare the proposed spatial arrangement
descriptor to shape distribution (computed using a uniform
set of 10K points per PA with 64 histogram bins and aver-
aged over 5 runs) on a small example. In each case, we com-
puted descriptors for a set of 69 PA-s extracted from a set
of three airplane models, computed their pairwise distances,
and embedded the distances to 2D using multi-dimensional
scaling (MDS). Our proposed descriptor by focusing on PA-
s over the geometry of the parts can more reliably cluster
similar arrangements (arrangement of orange/blue boxes in
this example), while differentiating between different ones.

We construct a PA similarity matrix M1 to store the pair-
wise similarity between all pairs of PA-s coming from dif-
ferent models (i.e., Mi 6= M j). Note that the number of
columns/rows in M1 is equal to the total number of PA-
s across all the input models. Specifically, given two PA-s
sab 2Mi and scd 2M j, we define the corresponding similar-
ity matrix entry in M1 as exp(�kS(sab)�S(scd)k2/2s2),

Figure 6: We design a simple descriptor for PA-s, based on
the relative arrangement of the bounding boxes of their in-
dividual parts. A candidate part (e.g., fuselage) can partic-
ipate in different PA-s and thus appear in multiple regions
of the descriptor space. The sub-figures show MDS mapping
to 2D applied to the pairwise PA distances computed using
the proposed descriptor (left) and shape distribution (right).
Focusing on part arrangements over part geometries reveals
high-level similarity.

i.e., higher distances getting lower similarity values. We set
s = 0.1.

Alternative descriptors can also be used, e.g., we ex-
perimented with a descriptor that computes the transla-
tion/rotation/scaling (2 R9) necessary to map B1! B2, but
found the performance comparable for the repository mod-
els that were mostly axis-aligned. The challenge then was to
relatively weigh distance, angle, and scale.

Part similarity matrix M2. We use the PA similarity ma-
trix M1 to vote for similarity among corresponding candi-
date parts coming from different models. We encode the
similarity as the part-similarity matrix M2 with number of
rows/columns equal to the total number of parts across all
the models, i.e., Âi |Qi|. Starting with M2 = 0, we take the
appropriate similarity values from M1 and accumulate them
to form M2. Intuitively, a high entry in M2 indicates a pair
of parts that can be swapped across models, while preserv-
ing their respective PA descriptors, i.e., without disturbing
the resultant arrangement.

For any valid PA-s sab 2Mi and scd 2M j with Mi 6= M j,
we have a corresponding entry M1(sab,scd), capturing the
similarity between sab := (pa, pb) and scd := (pc, pd). Now,
in a key enabling step, we are ready to assess the similarity
between pa $ pc and pb $ pd . Intuitively, if parts can be
swapped without affecting the corresponding PA descriptors,
we expect them to be ‘similar’ and accumulate the evidence.
Note that now similarities are between a pair of parts, but
coming from different models Mi and M j. We simply assign
M2(pa, pc) M2(pa, pc) +M1(sab,scd) and similarly for
M2(pb, pd). The main observation is that we arrived at these
part similarity values simply relying on pair arrangements.
(Note that we assumed (pa, pb) and (pc, pd) to be relatively
ordered based on corresponding bounding boxes B1, B2 as
defined earlier. If not, we switch the assignments to pa$ pd
and pb$ pc.)

Segment similarity matrix M3. Finally, we use the infor-
mation gathered in M2 to construct a similarity matrix M3
(with number of rows/columns equal to the total number
of nodes across all relation-graphs) between pairs of seg-
ments (i.e., initial components) coming from different mod-
els, starting with M3 = 0. However, we cannot directly dis-
tribute the entries from M2 to M3 since different parts can
be made of a different number of segments. We observe that
splitting a part into any two subparts results in one of the
following: (i) at least one invalid subpart, i.e., the nodes are
disconnected in the corresponding relation-graph; (ii) two
subparts where each subpart is a single node (i.e., segment);
(iii) two subparts where one subpart is a part and another is
a segment; or (iv) two smaller parts.

Based on these observations, we propose a recursive al-
gorithm to accumulate part similarity (M2) into M3. For any
pair of parts pa 2 Mi and pb 2 M j , we look at the corre-
sponding similarity entry M2(pa, pb). Further, say part pa

c� 2014 The Author(s)
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X
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X

i,j
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Figure 12: Stability of results under different input segmen-
tations. The percentage histograms show the distances be-
tween the discovered and the original part arrangements for
5 datasets, across 100 runs of the two tests. Distance is mea-
sured as the average distance between the corresponding
parts’ bounding box vertices. Notice the examples of chair
and plane where distance is negligible.

we counted the fraction of correct part tags (each segment
gets one tag) to measure accuracy. For the preprocessed
manifold models, we projected the face tags to their parent
input models. Table 1 presents a summary of the compari-
son. In many cases, even on manifold meshes, clustering in
the geometric feature space simply failed – we mark them
by ‘⇥’.

Table 1: Semantic segmentation accuracy against manually
annotated groundtruth labeling across different algorithms.

Class Kim’13 Wang’12 Hu’12 Huang’12 ours
chair 0.59 0.69 0.30 0.83 0.96
bed 0.25 0.27 ⇥ 0.65 0.91
inf. bed 0.53 0.36 0.61 0.37 0.71
airplane 0.52 0.36 ⇥ 0.58 0.94

Robustness. Our algorithm relies on the input over-
segmentations. We performed two tests to evaluate the sta-
bility of the algorithm on varying input segmentations. (Note
that we cannot handle input as polygon soups due to com-
putational complexity, and also due to degenerate config-
urations.) In the first test (#a), we selected 50% of the in-
put models at random and ran our algorithm on such selec-
tions. For each model family, we compared the results across
100 random runs and quantitatively evaluated the closeness
of the recovered parts with the base results. In the second
test (#b), we selected 70% of the input models at random and
independently split their segments (10-20%) also at random,
and compared the stability of the results across 100 runs. In
both tests, we found the discovered parts to be stable with
respect to (moderate) variations in initial partitioning (see
Figure 12). In most cases, the variations in the extracted part
arrangements are marginal.

User study. We hypothesize that certain arrangements of
parts are intrinsic to a given type of object, and these are ex-
tracted by our algorithm. To test this, we conducted a user
study using a selection of shapes from our datasets (air-
plane, bed, car, chair, table). First, bounding boxes of the
corresponding (extracted) part arrangements were shown in
random order. Users were asked to recognize what type of
shape these abstract boxes represent. Second, the same part
arrangements were shown in a different random order, but
this time the user had eleven options to choose from, drawn
from the names of all datasets used in this paper.

136 users (age range 18-55 years) participated in the user
study, with 74% being male and 62% having some computer
graphics experience. Even in the first step, users were able to
correctly identify airplane (93%), bed (100%), chair (99%)
and table (99%), while they failed to recognize car reliably
(35%). In the second stage, not surprisingly, the recognition
success was slightly higher.

Timing. The complexity of our algorithm is O(N3), where
N is the size of M j=1,2,3, which strongly depends on the
number of nodes in the relation-graph as the size of ma-
trix M1 depends on it. In our examples, the typical num-
ber of nodes in the relation-graphs is less than 15, e.g., for
the airplanes and the cars it is around 10. While the typical
number of PA-s was a few dozens for sparse graphs, it went
up to a few hundreds for complex graphs with loops (e.g.,
bikes, toy-planes). The corresponding running times were
a few seconds to 2-5 minutes (see also demo) for a single
core implementation. Most example model collections took
less than two minutes to process, as their relation-graphs are
sparse. However, for complex datasets such as bike, car, and
bed, it took about 5 minutes.

Limitations. Our algorithm suffers from the following lim-
itations: (i) while our method assumes access to man-made
models with multiple components, we can not handle poly-
gon soups or a single connected manifold mesh or raw
scanned point clouds; and (ii) since we search for all pos-
sible part arrangements, we run into scalability challenges
for models with many spurious components or model col-
lections with many models.

6. Conclusions and Future Work

We presented an unsupervised algorithm to extract consis-
tent parts and their arrangements in model collections of
semantically related shapes. In a top-down approach, ar-
rangements of parts are compared across different mod-
els and the findings are then diffused to recover consistent
parts across the different models. We evaluated our approach
on a range of models with large geometric and topologi-
cal variations, and compared our results with state-of-the-art
co-segmentation methods, using manually-annotated bench-
mark datasets.

c� 2014 The Author(s)
Computer Graphics Forum c� 2014 The Eurographics Association and John Wiley & Sons Ltd.
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Figure 12: Stability of results under different input segmen-
tations. The percentage histograms show the distances be-
tween the discovered and the original part arrangements for
5 datasets, across 100 runs of the two tests. Distance is mea-
sured as the average distance between the corresponding
parts’ bounding box vertices. Notice the examples of chair
and plane where distance is negligible.

we counted the fraction of correct part tags (each segment
gets one tag) to measure accuracy. For the preprocessed
manifold models, we projected the face tags to their parent
input models. Table 1 presents a summary of the compari-
son. In many cases, even on manifold meshes, clustering in
the geometric feature space simply failed – we mark them
by ‘⇥’.

Table 1: Semantic segmentation accuracy against manually
annotated groundtruth labeling across different algorithms.

Class Kim’13 Wang’12 Hu’12 Huang’12 ours
chair 0.59 0.69 0.30 0.83 0.96
bed 0.25 0.27 ⇥ 0.65 0.91
inf. bed 0.53 0.36 0.61 0.37 0.71
airplane 0.52 0.36 ⇥ 0.58 0.94

Robustness. Our algorithm relies on the input over-
segmentations. We performed two tests to evaluate the sta-
bility of the algorithm on varying input segmentations. (Note
that we cannot handle input as polygon soups due to com-
putational complexity, and also due to degenerate config-
urations.) In the first test (#a), we selected 50% of the in-
put models at random and ran our algorithm on such selec-
tions. For each model family, we compared the results across
100 random runs and quantitatively evaluated the closeness
of the recovered parts with the base results. In the second
test (#b), we selected 70% of the input models at random and
independently split their segments (10-20%) also at random,
and compared the stability of the results across 100 runs. In
both tests, we found the discovered parts to be stable with
respect to (moderate) variations in initial partitioning (see
Figure 12). In most cases, the variations in the extracted part
arrangements are marginal.

User study. We hypothesize that certain arrangements of
parts are intrinsic to a given type of object, and these are ex-
tracted by our algorithm. To test this, we conducted a user
study using a selection of shapes from our datasets (air-
plane, bed, car, chair, table). First, bounding boxes of the
corresponding (extracted) part arrangements were shown in
random order. Users were asked to recognize what type of
shape these abstract boxes represent. Second, the same part
arrangements were shown in a different random order, but
this time the user had eleven options to choose from, drawn
from the names of all datasets used in this paper.

136 users (age range 18-55 years) participated in the user
study, with 74% being male and 62% having some computer
graphics experience. Even in the first step, users were able to
correctly identify airplane (93%), bed (100%), chair (99%)
and table (99%), while they failed to recognize car reliably
(35%). In the second stage, not surprisingly, the recognition
success was slightly higher.

Timing. The complexity of our algorithm is O(N3), where
N is the size of M j=1,2,3, which strongly depends on the
number of nodes in the relation-graph as the size of ma-
trix M1 depends on it. In our examples, the typical num-
ber of nodes in the relation-graphs is less than 15, e.g., for
the airplanes and the cars it is around 10. While the typical
number of PA-s was a few dozens for sparse graphs, it went
up to a few hundreds for complex graphs with loops (e.g.,
bikes, toy-planes). The corresponding running times were
a few seconds to 2-5 minutes (see also demo) for a single
core implementation. Most example model collections took
less than two minutes to process, as their relation-graphs are
sparse. However, for complex datasets such as bike, car, and
bed, it took about 5 minutes.

Limitations. Our algorithm suffers from the following lim-
itations: (i) while our method assumes access to man-made
models with multiple components, we can not handle poly-
gon soups or a single connected manifold mesh or raw
scanned point clouds; and (ii) since we search for all pos-
sible part arrangements, we run into scalability challenges
for models with many spurious components or model col-
lections with many models.

6. Conclusions and Future Work

We presented an unsupervised algorithm to extract consis-
tent parts and their arrangements in model collections of
semantically related shapes. In a top-down approach, ar-
rangements of parts are compared across different mod-
els and the findings are then diffused to recover consistent
parts across the different models. We evaluated our approach
on a range of models with large geometric and topologi-
cal variations, and compared our results with state-of-the-art
co-segmentation methods, using manually-annotated bench-
mark datasets.

c� 2014 The Author(s)
Computer Graphics Forum c� 2014 The Eurographics Association and John Wiley & Sons Ltd.

Friday, 11 April 14



Recurring Part Arrangements in Shape Collection   Eurographics 2014

Overview

• Introduction

• Related Works

• Main Idea

• Algorithm

• Results

• Summary and Future work

Friday, 11 April 14



Recurring Part Arrangements in Shape Collection   Eurographics 2014

Summary	  and	  Future	  Work

Friday, 11 April 14



Recurring Part Arrangements in Shape Collection   Eurographics 2014

Summary	  and	  Future	  Work
– Arrangements relates to shape design and functionalities

• How parts are arranged?
• How parts interact?

Friday, 11 April 14



Recurring Part Arrangements in Shape Collection   Eurographics 2014

Summary	  and	  Future	  Work
– Arrangements relates to shape design and functionalities

• How parts are arranged?
• How parts interact?

wind shield vs. side mirror

Friday, 11 April 14



Recurring Part Arrangements in Shape Collection   Eurographics 2014

Summary	  and	  Future	  Work
– Arrangements relates to shape design and functionalities

• How parts are arranged?
• How parts interact?

– Beyond pairwise arrangements?
• Structural invariant
• Pattern relations across shape families
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