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Abstract—We present a robust algorithm for esti-
mating visibility from a given viewpoint for a point
set containing concavities, non-uniformly spaced
samples, and possibly corrupted with noise. Instead
of performing an explicit surface reconstruction for
the points set, visibility is computed based on a
construction involving convex hull in a dual space,
an idea inspired by the work of Katz et al. [26].
We derive theoretical bounds on the behavior of the
method in the presence of noise and concavities, and
use the derivations to develop a robust visibility es-
timation algorithm. In addition, computing visibility
from a set of adaptively placed viewpoints allows
us to generate locally consistent partial reconstruc-
tions. Using a graph based approximation algorithm
we couple such reconstructions to extract globally
consistent reconstructions. We test our method on a
variety of 2D and 3D point sets of varying complexity
and noise content.

1. INTRODUCTION

Unorganized point cloud data (PCD) is the natural
output of many 3D scanning systems. Despite its sim-
plicity, recent research [1], [33], [22] demonstrates that
PCD can be an effective and powerful shape represen-
tation, suitable for model editing and manipulation. The
simplicity of PCD data-structures, the easy availability
of 3D scanners as its source, and the promise of gen-
eralization to higher dimensions have all contributed to
the popularity of this representation.

Unlike with other surface representations, the notion
of visibility for a point set is ambiguous. However, once
we have a well defined surface based on a point set, we
can uniquely define the notion of visibility and identify
its hidden points, from any viewpoint. The problem of
reconstructing a (smooth) surface from a noisy point
set, under moderate sampling requirements, has been
extensively studied by the computer graphics [23], [27]
and by the computational geometry community (see
recent monograph [11]).

Recently Katz et al. [26] introduced the hidden point
removal (HPR) operator (see Figure 1), a simple and
elegant algorithm for determining point set visibility
without explicitly reconstructing an underlying surface.
The operator uses the convex hull of a point set obtained
by mapping the original PCD to a dual domain to
estimate the visible points in the input point set. This
allows meaningful visibility computation from a desired
viewpoint without the need to explicitly reconstruct a
surface.

Given an input point-set, the original HPR operator
determines the set of visible points from a specified
viewpoint in two steps: First, the input PCD is inverted
using a suitable function about the given viewpoint.
Next, the convex hull of the inverted points along with
the viewpoint is computed, and the points lying on
the convex hull are marked as visible (see Figure 1).
Thus, even though visibility for point sets is defined
using a reconstructed surface definition, the HPR op-
erator allows to estimate this visibility while operating
directly on the points. Unfortunately, the simple operator
performs poorly in presence of noise and fails to handle
regions involving high curvature (see Figures 2 and 5,
respectively).

We observe that such problems arise as slight input
perturbations can result in significant changes in the
structure of the corresponding convex hull. As a result,
several points can be labeled incorrectly. However, in
such cases the corresponding inverted points stay close
to the new convex hull instead of being exactly on it.
We quantify this observation by analyzing the effect of
noise on the inversion and bound the deviation from
the convex hull. We provide theoretical bounds on the
stability of the HPR operator and identify guard bands
around given point clouds, which are regions in space
from where visibility cannot be reliably estimated using
the algorithm. By suitably relaxing the condition of
points lying on the convex hull to include points near
the convex hull, we arrive at a robust visibility operator.

Using this understanding, we propose simple algo-
rithms for consistent curve and surface reconstructions.
The ability to reliably extract local connectivity informa-
tion, enables the direct application of various geometry
processing tools on the input PCD. Piecing together lo-
cal connectivity inferred from various adaptively placed
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Figure 1. Stages of the basic HPR operator [26]. Figures have been
suitably scaled for illustration.



viewpoints we build a connectivity graph. A special sub-
graph of this graph implicitly encodes a reconstruction
for the input PCD. Since extracting this sub-graph turns
out to be an instance of the maximal weight-cycle prob-
lem, known to be NP hard, we propose an approximate
solution. Besides curve or surface reconstructions, the
connectivity graphs can also be used for smoothing the
noisy input point set.
Contributions. We analyze the effect of noise in the
inverted domain and obtain a bound for the distortion
of the convex hull for HPR operator. We introduce the
concept of guard bands around the point set from where
visibility cannot be reliably estimated. This understand-
ing leads to a robust HPR operator, for 2D and 3D point
sets, that is used to infer local connectivity, which is
subsequently collated using a graph based approxima-
tion algorithm to extract a consistent manifold.

2. BACKGROUND

Given a polygonal model, the problem of correctly
and efficiently identifying the hidden faces or deter-
mining the visible parts of a model from a specified
viewpoint has received significant attention since the
early days of computer graphics [5], [7]. The problem
is essentially an instance of sorting the model primi-
tives according to their depth values [36]. Given the
importance of the problem, hardware solutions like z-
buffer [8], [35] have been proposed and widely de-
ployed. The equivalent question of detecting visibility
for a point set is ill-posed since the likelihood of a point
being exactly occluded by other points is negligible.
However, since a point set typically corresponds to an
underlying surface, one can first reconstruct this surface,
identify the visible part from the specified viewpoint,
and then mark points as visible if they lie on the visible
surface parts.

Surface reconstruction from unorganized points is
a fundamental problem in geometry processing with
applications in CAD, computer graphics and geometric
modeling [11]. It is complicated by the fact that the input
point sets typically contain noise and are non-uniformly
sampled. Several algorithms have been proposed under
different assumptions on the input data set [3], [14],
[29], [27]. Notably surface fitting using moving least
square (MLS) surfaces [28] and its variants [4], [17],
[24] are popular for their simplicity and effectiveness.

An alternate approach, proposed by Katz et al. [26],
estimates visibility of point sets directly without explicit
surface reconstruction. Given a point cloud P and a
camera viewpoint C, the hidden point removal (HPR)
operator determines the set of points that are visible
from C by a two step process of inversion and convex
hull computation (see Figure 1). For simplicity, assume
that C is at the origin. First, each point pi ∈ P
is inverted about the origin, i.e., the viewpoint, using
an inversion function f(pi), which monotonically de-
creases with ‖pi‖(where ‖.‖ is a norm). This results in
points closer to the viewpoint becoming far and vice-
versa. Typical inversion functions include spherical and
exponential, which for any point pi, are defined as:

• Spherical inversion

p̂i := f(pi) = pi + 2 (R− ‖pi‖)pi/‖pi‖ (1)

where, R is the radius of inversion.
• Exponential inversion

p̂i := f(pi) = pi/‖pi‖γ (2)

where, γ > 1 is the inversion parameter and
‖pi‖ < 1.

Let P̂ denote the inverted point cloud. In the second
step, we take the convex hull of P̂ ∪ C. All the points
of the original point set that get mapped onto the
convex hull constitute the set of points visible from C.
For a point cloud with n points, it has an asymptotic
complexity of O(n log n). Radius of inversion is found
by maximizing the number of distinct points visible from
C and reflection of C about center of mass of the PCD.
For the rest of the paper we refer to this radius as Ropt.

An important drawback of this operator is its sus-
ceptibility to noise (Figures 2 and 3). The number of
false negatives, i.e., visible points that are declared as
hidden, for a radius R quickly increase as the noise
magnitude gets larger (Figure 3, column 2). In presence
of noise, the optimized radius Ropt proposed in [26]
may converge at a much larger radius resulting in large
number of false positives, i.e., hidden points declared
visible (Figure 3, column 3).

Figure 2. For noisy point cloud data, basic HPR operator can result
in unreliable visibility estimates (shown in blue). Red points denote
samples that should have been marked as visible.

Another drawback of the original HPR operator is
the inability to consistently resolve visibility in regions
of high curvature. Based on the radius of inversion
and the point set, a curvature threshold exists such that
all concave regions with curvature below the threshold
are correctly resolved (see Lemma 4.3 in [26]). This
threshold can be increased by changing the radius of
inversion for spherical inversion function. Unfortunately,
this increases the number of false positives i.e., hidden
point declared visible (see Figure 5), thus restricting the
amount of concavity that can be reliably handled.

3. ROBUST VISIBILITY OPERATOR

We overcome the deficiencies of the original HPR
operator by introducing a robust visibility operator.
Noise in the original PCD may amount to large structural
perturbations of the convex hull in the inverted domain.
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Figure 3. Visibility of noisy point cloud under varying noise amount
from a fixed view point (not shown in the figure). Blue points
denote the points identified as visible, while red denote the hidden
ones. Rows from top down indicate points with no, 1%, and 1.7%
additive uniform noise in normal direction, respectively measured in
terms of length of diagonal of the bounding box. Polylines indicate
recovered local connectivity. Observe the robustness of the proposed
HPR operator. For comparison, we use the original connectivity and
visibility information (top-left) as ground truth for the noisy cases.

As a result, some visible points may get displaced from
the perturbed hull. We bound the maximum deviation of
such points, and define a thin band around the convex
hull which contains these points. This helps us specify
the robust HPR operator.

Let P denote the original noise free point set. Let
Pσ := {pi + σni|∀pi ∈ P} be the noisy point set,
where σ is a uniform random variable over the range
[0, a], and ni is a unit vector oriented in a uniformly
chosen random direction. Intuitively, we assume that in
the noisy point cloud every point is perturbed to a point
chosen uniformly at random from a ball of radius a
centered at it (similar noise model was used by Mitra et
al. [32]) and Pauly et al. [34].)

3.1 Noise Robustness

In this section we present the main results, while the
corresponding proofs can be found in the Appendix.
Here we consider spherical inversion, while the expo-
nential inversion case can be found in the Appendix.

Theorem 1. Given a noisy point cloud Pσ , a viewpoint
C, the maximum noise in the inverted domain under
spherical inversion function with radius of inversion R,
is bounded by

εmax =

(
4R

amin − σ
− 1

)
σ (3)

where, amin is the distance from C to the closest point
in P.

This implies that the convex hull of Pσ will not be
displaced more than εmax with respect to the convex
hull of P. In the worst case, it could move out by εmax

while previously visible points could move in by εmax.
Therefore, the false negative points can be separated by
a maximum of 2εmax from the convex hull. We mark
such points as visible, project them onto the convex

hull, and recover local connectivity in the process.

Given a noisy point cloud Pσ , diameter of point cloud
D(= (amax − amin)), we use projection if

εmax ≤ αD/2 (4)

where, α is the projection parameter and amax is the
distance from C to the farthest point in P. We use α =
0.15 for all examples in this paper. The allowed range
of R for which such a projection can be performed is
given as follows.

Lemma 1. Given a noisy point cloud Pσ , projection
can be applied if

mamax ≤ R ≤
(
αD

2σ
+ 1

)(
amin − σ

4

)
. (5)

See Appendix for meaning of variable m. Further sim-
plification leads to the following bound on the noise
margin that can be reliably handled:

σ <
αD

2(4m− 1)
. (6)

This shows that if the noise margin exceeds
αD/2(4m− 1), then distinguishing points of different
surface parts from noisy points becomes ambiguous,
and hence projection can fail. If noise is less than
the threshold, we can apply projection and recover
visibility along with local connectivity.

Theorem 2. Given a noisy point cloud Pσ , the minimum
distance above which viewpoints can be placed amin is

amin ≥
(4m+ α

2 )D + σ(
αD
2σ − (4m− 1)

) . (7)

As we cannot place a viewpoint at distance closer than
the threshold, this defines a guard zone around the noisy
point cloud (see Figure 4). When σ ≥ αD/2(4m− 1),
Equation 7 is no longer valid and the guard zone spans
the entire space.

In summary, for determining the robust visibility of
noisy point cloud Pσ from viewpoint C, we first check
the position of C w.r.t the guard band. If C lies outside
the guard zone, we apply the inversion and convex hull
steps of the original HPR operator to Pσ while keeping
R inside the radius range (Equation 5). For pi ∈ Pσ ,
if the inverted point p̂i is closer than 2εmax from the

Figure 4. For a noisy point cloud (left), we define the corresponding
guard zone (right) as the region in space from which visibility cannot
be reliably estimated (see Equation 7).
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Figure 5. For concave regions, small values of radius of inversion
results in missing several visible points, while large values lead to
many false positives. Even manually tuned R produces unsatisfactory
result. The robust HPR operator, using a weighted definition of
visibility, yields results comparable with the ground truth.

convex hull, we project p̂i back onto the convex hull,
update the convex hull connectivity and mark pi as
visible. This gives us robust visibility of noisy PCD Pσ

from viewpoint C. Otherwise if C lies inside the guard
zone, the noise ambiguity of the data prevents us from
correctly determining the visibility from this viewpoint.

3.2 Concavity Robustness
The original HPR operator correctly estimates the

set of visible points for oblique planar and convex
regions of the point cloud. The method can also handle
limited concavity (Lemma 4.3 in [26]) with the limit
or the curvature threshold being directly proportional to
the radius of inversion R. In order to handle regions
of higher curvature one could potentially increase R,
thereby increasing the curvature threshold. However, this
leads to higher false positives (see also Figure 7 in [26]).

We introduce a softer notion of visibility that allows
the handling of high curvature regions. We draw upon
the observation that convex, oblique planar and low
curvature concave regions are consistently visible at
lower range of R, whereas high curvature concave
regions become visible only at higher R values. Keeping
the viewpoint fixed, we estimate visibility using various
R in the range [amax, Rmax].

For noise-free point cloud P, Rmax = Ropt as given
by the original HPR operator in [26]. In case of noisy
point cloud Pσ , Rmax =

(
αD
2σ + 1

) (
amin−σ

4

)
as shown

in Equation 5.
Points are weighted depending on the number of

times they are tagged visible. Unlike visible points, false
positives are not persistently estimated to be visible
in any sizable interval in the radius range. Using this
observation, we filter out false positives across the
curve/surface (see Figure 5).

The robust visibility operator inherits convex hull
connectivity from the construction step. For 2D points
connectivity is in the form of edges, while in 3D it con-
sists of triangles. Similar to weighted visibility of points,
we assign weights to such connectivity edges/triangles
proportional to the number of times they appears in the
convex hull over different values of R. These (normal-
ized) weights are subsequently used for curve/surface
reconstruction and for noise smoothing.

4. VISIBILITY BASED RECONSTRUCTION

The notion of visibility for point clouds is defined
with respect to a surface reconstructed from the point

set. Being able to estimate visibility without explic-
itly reconstructing the surface, we now propose how
to extract a surface reconstruction stringing together
visibility estimates from various viewpoints. From each
viewpoint, along with visibility estimates, we get a
partial reconstruction in the form of local connectivity,
where a pair of points is considered neighbors if both
the points are marked visible and share an edge along
the convex hull constructed in the inverted domain.
We begin by placing multiple viewpoints around the
point cloud while staying out of its guard zone. Using
the robust HPR operator we generate locally consistent
partial reconstructions from each of these viewpoints.
We globally couple such reconstructions using a graph
theoretic formulation to extract a curve/surface recon-
struction. First, we note some desirable properties of
such a reconstruction:

Curve. Reconstruction of a 2D point cloud sampled
from a simple closed curve should be a set of edges
connecting the points such that they form a closed loop
without self-intersections.

Surface. Reconstruction of a 3D point cloud sampled
from a manifold surface should consist of triangles such
that: Each edge of a triangle is shared with at most one
other triangle, each triangle shares edges with at most
three others, and triangles intersect only at edges.

4.1 Curve Reconstruction

Given a noisy point cloud Pσ , we determine the
extent of the guard zone surrounding it using Equation 7
and place a collection of viewpoints uniformly, say C,
outside this zone. For all our 2D experiments we used
|C| = 120. For every viewpoint C ∈ C, the robust
HPR operator estimates a set of visible points along
with local connectivity information, even in the presence
of noise or concavity. For each viewpoint, each edge
of the local connectivity graph is assigned a visibility
weight proportional to the number of times the edge is
visible from the viewpoint for different choices of R (see
Section 3.2). Final weight of an edge is equal to the sum
of the weights from each viewpoint. Union of all such
edges represents the global connectivity information. We
call this the visualization step.

The connectivity information is encoded as a graph
G = (V,E), where the vertex set V consists of points
of Pσ and the edge set E is the union of all edges
found in the visualization step. This weighted graph
defines the relative importance of edges for the final
reconstruction. Based on the intuition that the edges
belonging to the reconstructed curve should be visible
from multiple viewpoints, and thus have higher weights,
we formulate the curve reconstruction problem of 2D
point cloud as follows: Given a graph G = (V,E) that
encodes the connectivity information extracted in the
visualization step, find the maximum weighted subgraph
of G that forms a valid curve.
NP Hardness. Even though the formulation is intuitive,
the optimization problem defined above is NP hard.
Finding the maximum weight cycle in a weighted graph
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Figure 6. Curve reconstruction results for points sampled off apple, butterfly, crab, and dolphin models with different noise amounts and non-
uniform sampling. For illustration, sample points are also shown in orange in corresponding insets. Medium-noise and high-noise correspond
to uniform random perturbations in the normal direction respectively by 1% and 2% of the diagonal length of the original bounding boxes.

is known to be a NP hard problem [21]. The hardness
results is true even for an uniformly weighted (unit
weight) undirected graph [25]. We look for approxima-
tion algorithms that lead to near optimal results. Note

noise-free uniform sampling medium-noise uniform sampling high-noise uniform sampling noise-free 50%-missing sampling noise-free 75%-missing sampling
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Figure 7. Reconstruction result using robust HPR, crust [2], CC-
crust [16], and Gathan [19]. For noise-free uniform sampling all algo-
rithms perform well. The crust reconstruction degenerates in presence
of noise or on non-uniformly sampled point sets. On noise-free but
non-uniformly sampled point sets, CC-crust, Gathan, and robust HPR
give similar results. However, in presence of noise, robust HPR yields
better connectivity, while CC-crust and Gathan reconstructions contain
many small curves. All algorithms yield results within 1-2 seconds.

that although we found our algorithms, both in 2D and
in 3D, to give good results experimentally, at this point
we do not have any reasonable factor to bound their
approximation quality.
Approximation algorithm. We propose an approxima-
tion algorithm (see Algorithm 1) to find the maximum

Algorithm 1 Curve Reconstruction
Input: A graph G = (V,E) with set of vertices V and
weighted edges E
Output: Maximum weight cycle S ⊆ E

1: S ← max weight edge(E)
2: {Add heaviest edge incident on an end point}
3: repeat
4: vl ← left most vertex(S)
5: vr ← right most vertex(S)
6: eleft ← max weight edge(e | e ∈ E(vl)− S and

NotIntersect(e, s) ∀s ∈ S )
7: eright ← max weight edge(e | e ∈ E(vr) − S

and NotIntersect(e, s) ∀s ∈ S )
8: e = max weight edge(eleft, eright)
9: S ← S ∪ e

10: until e = ∅ or vl = vr
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original HPR robust HPR

# visible points: 7822
# false negatives: 722
# false positives: 2456

# visible points: 7822
# false negatives: 722
# false positives: 2028

# visible points: 10241
# false negatives: 1193
# false positives: 2698

# visible points: 10736
# false negatives: 698
# false positives: 923

# visible points: 2822
# false negatives: 280
# false positives: 752

# visible points: 2846
# false negatives: 256
# false positives: 408

# visible points: 3166
# false negatives: 258
# false positives: 1304

# visible points: 3252
# false negatives: 172
# false positives: 472

tooth
noise: 0.75%

horse
noise: 0.5%

Igea
noise: 1%

Max Plank
noise: 1%

Figure 8. Comparison of visibility results by original HPR operator and robust HPR operator on point clouds from various models corrupted
with uniform random perturbations in the normal direction (view points are not shown). Noise margins as indicated with the data sets are
measured with respect to the diagonal lengths of the respective original bounding boxes. Yellow points denote correctly marked visible points,
blue points denote those falsely marked as visible(false positives), and red points denote those which are falsely marked as invisible(false
negatives). Most false points for robust HPR operator lie near the respective silhouettes. False negatives and positives are marked using ground
truth computed based on a simple z-buffer visibility test using the connectivity of the (respective) original 3D models.

weight cycle in a sparse graph G = (V,E). The
central idea is to iteratively build a solution by greedily
augmenting the current solution with new edges. We
refer to the partial solution at the end of the i-th iteration
as the set Si ⊆ E. The invariant that we maintain
throughout the algorithm is that edges in Si form a
path. We initialize the set S0 with the heaviest edge
of E (Algorithm 1: step 1). In the i-th iteration, the
solution is augmented with the heaviest edge incident
on one of the two end-points of the path Si, which does
not intersect any other edge in Si (Algorithm 1: steps 6
to 8). This prevents the formation of cycles. The process
is repeated until we form a closed curve or we run out
of candidate edges. Next, we analyze its complexity.
Running Time. The number of edges in G is at

model amin amax σ εmax Rmax

tooth 1.69 2.27 0.010 0.046 2.44
horse 1.34 1.76 0.007 0.031 1.77
Igea 2.54 3.55 0.016 0.074 3.67

Max P. 2.42 3.43 0.014 0.067 5.00

TABLE 1
ROBUST VISIBILITY OPERATOR PARAMETERS FOR THE TEST

SCENARIOS SHOWN IN FIGURE 8.

most |V ||C|. Typically this bound is very loose and the
number of edges is usually only two-three times |V |
since the convex hulls of neighboring viewpoints overlap
considerably, sharing a lot of edges. Thus the number
of edges is O(|V |) with edge weights being bounded
by |C|. Every edge that is chosen must be checked to
see if does not intersect with any previously chosen
edge. The time spent in testing for edge intersections
(Algorithm 1: steps 6 and 7) dominates the running
time of the algorithm. For efficiency we pre-compute
all edge intersections in O(|E| log(|V |) + k) time [9]
where, k is the total number of intersecting edge
pairs in the graph. Typically k is small leading to an
asymptotic run time of O(|V | log(|V |)), i.e., O(n log n).

4.2 Surface Reconstruction
A generalization of the curve reconstruction problem

to 3D handles the surface reconstruction problem. The
underlying idea is to greedily extend the solution using
weighted atomic elements while maintaining the desired
properties using a graph theoretic formulation. As in
the 2D case, this guides the neighborhood search for
new elements. Visibility for triangles are tracked, like
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Figure 9. Typical behavior of original HPR and robust HPR on
raw scanned data from a given viewpoint (not shown), with the
hidden points in pink and visible points in yellow. Notice that the
boundary between visible and hidden regions is sharp with robust
HPR, indicating few misclassifications. In absence of ground truth, we
show the AMLS [18] + cocone [12] based reconstruction and use the
surface for visibility computation (left column) for comparison. Notice
the result also has misclassifications. We highlight some regions where
original HPR clearly produces a large number of misclassifications.
The scanner noise parameter σ is estimated using a calibration plane.

edges in 2D, since triangles are the building blocks of
the convex hull in 3D.

Given a noisy point set Pσ , we first determine the
guard zone and place multiple viewpoints outside it
uniformly at random. We used |C| ≈ 500 in our ex-
periments. For each viewpoint, the robust HPR operator
is applied, and for each triangle in the local connectivity
graph we maintain a count of the number of viewpoints
from which it is visible. The intuition being that triangles
that belong to an actual surface triangulation would be
visible more often.

We encode the results from the visualization phase
in a graph G = (V,E) where the vertex set V
consists of the set of all triangles encountered during
the visualization phase. Two vertices are defined to be
adjacent if their corresponding triangles share an edge.
Additionally, a pair of vertices in V are connected by
an anti-edge if the corresponding triangles intersect.

We define a weight function on the vertices as follows.
The weight of a vertex, i.e., triangle in the original
graph, consists of two components, the first of which
is fixed and is proportional to the number of times
it was included in a convex hull during visualization.
The second contribution to the weight of a vertex is
not statically determined at the start of the algorithm.
It is a function of the state of the algorithm and is
proportional to the number of neighbors of the vertex
that are already a part of the partial solution. Thus the
weight of a vertex not only depends on the visibility
information but also on its connectivity to other vertices
that have already been chosen, and may change during
the course of the algorithm. We use a stronger notion
of weight function because the surface reconstruction
affords higher degrees of freedom than the curve re-
construction problem. A greedy augmentation algorithm
similar to Algorithm 1, would need to choose between

triangles that share different number of edges with the
triangles that have already been chosen. This is different
from the possibilities during curve reconstruction where
every candidate edge is incident on exactly one of the
end-points of the partial solution. The weight function
defined above provides a single measure of the utility
of a triangle both from connectivity and visibility stand-
points.

We wish to find the maximum weight subset of V
such that no two vertices in the induced subgraph are
connected by anti-edges (to prevent self-intersection)
and the degree of every vertex in the induced subgraph
is exactly three (each triangle shares an edge with three
adjacent triangles).
NP Hardness. Even if we ignore the anti-edges the
given problem is NP hard [20]. So we seek an approx-
imate algorithm (see Algorithm 2) to this problem.
Approximation algorithm. As in 2D, we greedily
extend the solution set, while maintaining the desired
surface properties. Note that unlike the 2D case, here
the solution set refers to a subset of vertices in G.
Another departure from the curve reconstruction is that
while earlier we initialized the algorithm by a single
seed (heaviest edge), here we use multiple seeds in
the initialization phase of the algorithm to account for
varying sampling densities across different parts of the

AMLS + cocone robust HPR

Figure 10. Reconstruction outputs on raw scanned data for the coati
model using a combination of AMLS [18] and cocone [12] (left), and
robust HPR based smoothing (Section 4.4) with reconstruction (Al-
gorithm 2). While AMLS-cocone generate large triangles in poorly
sampled regions our approach provides a more natural result leaving
such regions empty. Similarly, by construction, our method avoids self
intersections present in AMLS-cocone based reconstruction. The raw
scan is thick due to noise and a direct reconstruction is unnatural.
Hence instead of an interpolatory solution, we choose approximation
as with AMLS method. For smoothing the point cloud for robust HPR,
we use connectivity based on robust HPR (see also Figure 14). On such
noisy scans original HPR based quick-and-dirty reconstruction breaks
down, since visibility and convex-hull based connectivity estimates
from single views have significant errors (see Figure 9).
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Figure 11. Surface reconstruction results on various models using Algorithm 2. (Left to right) A well-sampled kitten model, Igea face model
with varying levels of detail, mother-and-child model having narrow features and large holes, fandisk model containing sharp feature curves
and edges. Note that while state-of-the-art surface reconstruction methods can handle such inputs equally well or better, a visibility based
surface reconstruction method is interesting as it links two apparently different problems in computer graphics and computational geometry.

object. We start with an independent set of vertices in
G that have a weight greater than a preset threshold as
seed points (Algorithm 2: steps 4 to 7). In the next phase,
the algorithm proceeds by iteratively adding vertices to
extend the surface while ensuring that no pair of vertices
in G have an anti-edge between them and that no vertex
has degree more than three in the induced subgraph.
The order in which vertices are added is determined by
their weight, with heavier vertices getting higher priority.
Recall that the weight of a vertex is not fixed but is a
dynamic function of the state of the algorithm. We refer
to this as the greedy selection phase (steps 9 to 13).
The algorithm terminates when more vertices cannot be
added. A formal description of the algorithm is given
below.
Running Time: Like in 2D, the total number of can-

Algorithm 2 Surface Reconstruction
Input: A dual graph G = (V,E) with set of weighted
vertices V and edges E
Output: Maximum weight triangulation S ⊆ V

1: {Initialization: Build independent set}
2: S ←− φ
3: for all v ∈ V do
4: if W (v) ≥ THRESHOLD and notAdjacent(u,v)

and noAntiEdge(u,v) ∀u ∈ S then
5: S ← S ∪ v
6: V ← V − v
7: {Greedy Selection: Add vertices greedily}
8: v ← max weight vertex(w | w ∈ V, ∃s ∈ S s.t.

Adjacent(w, s) )
9: while v 6= NULL do

10: if noAntiEdge(u,v) and degree(u, S ∪ v) ≤ 3
∀u ∈ S then

11: S ← S ∪ v
12: V ← V − v
13: for all (u | u ∈ V and Adjacent(u,v)) do
14: update weight(u)
15: v← max weight vertex(w | w ∈ V, ∃s ∈ S s.t.

Adjacent(w, s) )

didate vertices after the visualization stage with |C|
viewpoints is at most |V ||C|. The running time consists
of the time spent in maintaining the priority queue,
which can be done in O(|V ||C| log |V ||C|) time using
a heap. Since the weight of any vertex is updated at
most twice and the total number of vertices is bounded
by |V ||C|, there are at most 2|V ||C| operations on the
heap. Another component of the running time deals
with enumerating the set of anti-edges, i.e., to check
for intersection between triangles corresponding to the
end points of the edge. Since checking for intersec-
tion of two triangles is an expensive operation, though
constant time, we avoid it wherever possible. Using
the observation that two triangles whose circumcenters
are reasonably far do not intersect, we only check
for triangle pairs whose circumcenters are close. By
calculating the circumcenters of all triangles (vertices in
G), and using efficient space partitioning data structure
techniques [6] we make efficient enumeration of the
anti-edges. In our experiments we have observed that
every triangle intersects with few other triangles thus
the number of anti-edges is reasonably small (typically
fewer than 10 per triangle in our experiments). Hence
the total running time is dominated by that spent in
managing the priority queue which is asymptotically
O(|V ||C| log(|V ||C|)), i.e., O(n log n) for a constant
number of viewpoints.

4.3 Improvements

• Filtering after Visualization: Triangles with long
edges can significantly slow down the algorithm,
since they can intersect with a large number of
edges. As a solution we filter out such abberations
after the visualization step by removing triangles
with edges more than 5× than the average sam-
pling distance savg. Furthermore, we normalize the
weight of every edge e by multiplying it with
exp(−2 · |‖e‖ − savg|/savg). Thus, triangles with
too long or too short edges get lower priority.
Similar edge filtering is less critical for 2D curve
reconstruction, where the algorithm is fast to start

8



Figure 12. (Top row) Input noisy point sets are smoothed and reconstructed using the robust HPR operator on torus, Igea, kitten, duck and
Pierrot models, respectively. Connectivity information from the smoothed reconstructions (middle row) are mapped back to the original noisy
data sets (bottom row). Insets highlight artifacts due to poor sampling or concavity.

with.
• Multi-iteration Reconstruction: In the reconstruc-

tion step, if the placed viewpoints do not cover the
entire point cloud, certain sections can be poorly
reconstructed. Also placing suitable viewpoints is
challenging since we do not know how the under-
lying curve/surface looks like. As a solution, we
use multiple iterations of the algorithm. In each
iteration, missing regions in the curve/surface are
located and viewpoints placed adaptively around
such regions. We decrease the number of additional
viewpoints exponentially by a factor of two result-
ing in log |C| iterations. Small holes are fixed using
diffusion based hole filling [10].

Figure 13. (Top row) AMLS smoothing [18] followed by tight cocone
reconstruction [13] (compare with Figure 12-middle row); (bottom
row) reconstruction results with robust cocone [15] (compare with
Figure 12-bottom row). Robust HPR based reconstruction produces
results of similar quality to these state-of-the-art methods on uniformly
sampled data (all these methods may exhibit artifacts in areas of high-
curvature). On non-uniformly sampled data robust HPR produces more
desirable results as shown in Figure 10. Note that in presence of noise,
the original HPR based method is not applicable.

4.4 Noise-smoothing
Since we start with noisy point cloud Pσ , our recon-

struction algorithm can output a rough and non-uniform
surface. However, the global connectivity information
E allows us to apply Laplacian smoothing without
explicitly reconstructing the surface. For each pi ∈ Pσ ,
we determine the set of its neighbors using connectivity
E. We then calculate the new position of pi by applying
HC Laplacian smoothing [30] as follows :

li = (1− ρ)pi + ρ

(∑
j∈Adj(i) w

i
jpj∑

j∈Adj(i) w
i
j

)
(8)

where wij = weight of edge connecting pi and pj and
ρ = 0.1 is the rate of Laplacian smoothing.

We denote the points in the previous iteration by qi
and the original points by oi.

bi = li − (αoi + (1− α)qi)

di = −βbi −
1− β
|Adj(i)|

∑
j∈Adj(i)

bj

pnewi = pi + di

where α = 1 and β = 0.6.
The resulting smoothed point cloud, after 80 to 100

iterations, is used as input for the next step. We apply
alternate steps of visualization and smoothing, typically
4 to 5, and return the smoothed point cloud as output
(see Figure 14). Alternating between visualization and

model # points noise margin time (in msec)
tooth 21.9k 0.75 % 531
horse 32.3k 0.50 % 681
Igea 8.3k 1.00 % 171

Max Planck 20.0k 1.00 % 375

TABLE 2
ROBUST VISIBILITY OPERATOR TIMINGS FOR THE TEST

SCENARIOS SHOWN IN FIGURE 8.
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Figure 14. Reconstruction results for point set from Igea model
corrupted with uniform noise in normal direction of magnitude 1% of
bounding box diagonal length. (Left to right) Surface reconstruction
of original point set, of point set obtained by smoothing the corrupted
point set using connectivity obtained from original HPR operator,
and of point set obtained by smoothing the corrupted point set using
connectivity obtained from proposed robust HPR operator. Both in
the case of original HPR and robust HPR, we avoid pruning of long
edges in the connectivity graphs based on thresholds and heuristics.
Due to long incorrect connections, the middle model degrades due to
‘smoothing’. Interior or back facing triangles are in blue.

smoothing results in improved connectivity estimates for
G(V,E) resulting in improved smoothing.

5. RESULTS

We tested our proposed robust HPR operator for
visibility and reconstruction of 2D points. Figure 3
compares our robust HPR operator with the original
HPR operator [26]. Our operator detects the correct set
of visible points and has fewer false positives for noisy
point sets. By placing multiple viewpoints around the
PCD, we generate consistent partial reconstructions that
are coupled using a graph based approach (Algorithm 1)
to extract a consistent curve passing through the input
point set. We tested the algorithm on samples extracted
from different curves under varying sampling conditions
and noise perturbations as seen in Figure 6. The algo-
rithm is robust and degrades gracefully under adverse
conditions.

Next we tested the robust operator to estimate visi-
bility for 3D point sets that were corrupted with noise.
Our operator consistently performed better than the orig-
inal HPR operator as seen in Figure 8. Corresponding
statistics about false negatives and false positives are
indicated alongside the figure, while respective timings
on a 2.8GHz Xeon desktop with 3GB RAM running
Windows XP are listed in Table 2. The graph based
technique for curve reconstruction can be suitably modi-
fied to perform surface reconstruction (see Algorithm 2).
Figure 11 demonstrates the performance of the method
on a variety of noise-free point-sets. The algorithm
performs well even in presence of sharp features and
non-uniform sampling.

In case of noisy point sets, an algorithm that in-
terpolates the input, which often appears in a band
around the original surface, produces significant fold-
overs and artifacts. A better approach is to use the
local connectivity estimated in the visualization step for
smoothing the point set (see Section 4.4) and reconstruct
the smoothed input (see Figure 12, middle row). The
resultant connectivity can then be mapped to the original
data (see Figure 12, bottom row). Notice the artifacts in

regions of concavity or poor sampling. Figure 14 com-
pares the performance of original HPR operator and the
proposed HPR algorithm when used for extracting local
neighborhood information and smoothing, followed by
reconstruction. For both methods we avoid the use of
thresholds to filter out long edges. Notice that for the
original HPR operator large number of false positives
lead to a degradation of the noisy point sets under
‘smoothing’.

6. CONCLUSIONS

We analyzed the effect of noise on the performance
of the HPR operator and introduced the concept of
guard bands around the point set from where visibility
cannot be reliably estimated. Using this we developed a
robust HPR operator to estimate visibility and infer local
connectivity for 2D and 3D point sets, without the need
to explicitly perform curve or surface reconstruction. We
also presented a graph based approach to collate partial
connectivity information extracted from multiple visibil-
ity queries to extract a consistent manifold. Application
to smoothing on noisy point sets was also demonstrated.
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APPENDIX

Let P denote the original noise free point set. Let
Pσ := {pi + σni | ∀pi ∈ P} be the noisy point
set, where σ is a uniform random variable over the
range [0, a], and ni is a unit vector oriented in a
uniformly chosen random direction. We may assume that
the viewpoint is at the origin of the coordinate system.
Let amin and amax be the shortest and farthest distance
from the origin to a point in P and D be the diameter
of point cloud, i.e., (amax−amin). For any point p ∈ P
let pσ be the corresponding point in Pσ , and p̂ be its
image in the inverted space.

Spherical inversion function

The spherical inversion function is defined as follows.

p̂ = p+ 2(R− ‖p‖)p/‖p‖ = 2Rp/‖p‖ − p.

For a point p ∈ P,

p̂ = 2Rp/‖p‖ − p

p̂σ = 2R(p+ σn)/‖p+ σn‖ − (p+ σn).

10



Next, we quantify the effect of noise on points in the
inverted domain. Let ε denote the magnitude of noise in
the inverted domain, i.e., ε = ‖p̂σ − p̂‖. We have,

ε = ‖2R
(

1
‖p+σn‖ −

1
‖p‖

)
p+

(
2R

‖p+σn‖ − 1
)
σn‖

≤ ‖2R
(

1
‖p‖−σ −

1
‖p‖

)
p‖+ ‖

(
2R
‖p‖−σ − 1

)
σn‖

≤ 2R
(

σ
(‖p‖−σ)‖p‖

)
‖p‖+

(
2R
‖p‖−σ − 1

)
σ‖n‖

≤ 2Rσ
‖p‖−σ +

(
2R
‖p‖−σ − 1

)
σ

≤
(

4R
‖p‖−σ − 1

)
σ.

So the maximum noise in the inverted domain is
bounded by

εmax =

(
4R

amin − σ
− 1

)
σ.

In our algorithm for robust visibility we project the noisy
points onto the convex hull. This projection is robust and
consistent only when 2εmax ≤ αD, where α ∈ [0, 1].
Simplifying we get,

R ≤
(
αD

2σ
+ 1

)(
amin − σ

4

)
.

Now we find a range of value of R over which we
can reliably perform this projection. Recall that in the
noise-free scenario, convex hull of the inverted point
cloud along with the viewpoint gives us the correct
visibility estimates. But in presence of noise, the points
in the inverted domain may get perturbed by at most
2εmax, causing some of the previously visible points to
be marked as hidden. To solve this problem, we project
points back to the convex hull if they are within 2εmax

from the (new) convex hull.
While the projection operator works well for locally

convex regions, it may lead to false negatives in concave
regions. In this case, the noisy points can be even farther
than 2εmax from the convex hulls in the inverted regions
and may lead to false negatives. As concave region
visibility is proportional to the radius of inversion R
(Lemma 4.3 in [26]), we have to select R that is greater
than the minimum radius at which the concave region
is visible. This imposes a lower bound on R.

1) Locally convex region: Locally convex shapes are
visible at any radius, we can use any radius above
minimum radius possible for inversion, i.e., amax.

2) Locally concave region: Concave regions, see
Lemma 4.3 in [26], are correctly visible only above
a certain radius given by the local curvature κ. For
the simple case when the tangent to the surface is
perpendicular to the line of sight R > κr2/2. In this
case, the lower bound for R is not amax but some other
value say R′, greater than amax). Let R′ = mamax for
some m > 1.

Lemma 2. Given a noisy point cloud Pσ , projection
can be applied if

mamax ≤ R ≤
(
αD
2σ + 1

) (
amin−σ

4

)
.

Since amax = amin +D, we have

m(amin +D) ≤ R ≤
(
αD
2σ + 1

) (
amin−σ

4

)
.

Simplifying we get,(
4m+ α

2

)
D + σ ≤

(
αD
2σ − (4m− 1)

)
amin.

We now have three scenarios based on the noise level:
1) Case σ = 0: No noise, hence, there is no restric-

tion on amin.
2) Case σ < αD

2(4m−1) : For locally convex regions,
since m = 1 the bound becomes αD/6. For
concave regions, as m > 1 the noise threshold
is smaller than the αD/6. This suggests that in
presence of concave regions, the capability of
resolving high amounts of noise decreases. Thus,

amin ≥
(4m+ α

2 )D + σ(
αD
2σ − (4m− 1)

) .
3) Case σ ≥ αD

2(4m−1) : Such a large amount of noise
cannot be handled with this method without intro-
ducing many false positives, since distinguishing
points of different surface parts from noisy points
becomes ambiguous.

In second case, we can get a minimum distance to Pσ

above which robust visibility can be determined. This
defines the boundary of the guard zone (see Theorem 2).
Note that the guard zone is thicker around concave
regions than around convex ones.

Exponential Inversion Function
Equivalent results can also be obtained for the expo-

nential inversion function, which is defined as follows:

p̂ = p/‖p‖γ

where, γ > 1 is the inversion parameter and ‖p‖ < 1.
For any point p ∈ P we have,

p̂ = p/‖p‖γ

p̂σ = (p+ σn)/‖p+ σn‖γ .

Let ε denote the magnitude of noise in the inverted
domain, i.e., ε = ‖p̂σ − p̂‖. Then

ε =
∥∥∥ (p+σn)
‖p+σn‖γ −

p
‖p‖γ

∥∥∥
=

∥∥∥p( 1
‖p+σn‖γ −

1
‖p‖γ

)
+ σn
‖p+σn‖γ

∥∥∥
≤ ‖p‖

(
1

(‖p‖−σ)γ −
1
‖p‖γ

)
+ σ‖n‖

(‖p‖−σ)γ

≤ 1
‖p‖

γ−1
((

1− σ
‖p‖

)−γ
− 1

)
+ σ

(‖p‖−σ)γ

≤ γσ
‖p‖γ + σ

(‖p‖−σ)γ

≤
(
γ
(
1 + σ

amin

)
+ 1
)

σ
‖p‖γ .

So the maximum noise in the inverted domain is
bounded by

εmax =

(
γ

(
1 +

σ

amin

)
+ 1

)
σ

‖p‖γ
.
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While the first factor is linear, the second term is
exponential in γ. Variation in εmax is mainly due to the
exponential term. Therefore, we approximate the linear
term with a constant φ to get,

εmax = φσ/aγmin.

In our algorithm for robust visibility we project the
noisy points onto the convex hull. This projection is
robust and consistent only when 2εmax ≤ αD, where
α ∈ [0, 1]. Simplifying we get,

γ ≤ log (αD/(2φσ))/log(1/amin).

Lemma 3. Given a noisy point cloud Pσ , projection
can be applied if

m ≤ γ ≤ log (αD/(2φσ))/log(1/amin).

It follows that,

amin ≥ (2φσ/(αD))1/m.

Since amin < 1, we get

1 > amin ≥ (2φσ/(αD))1/m

leading to,
σ < αD/(2φ).
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