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Figure 1: Based on a user study, where participants abstracted meshes of common objects using a small collection of planar slices, we develop
an automatic algorithm to create planar slice based abstractions of (untrained) models. Starting from a set of planar slices, approximating
the object’s geometric features, the algorithm picks a subset of planes based on relative feature importance learned from the user study.

Abstract

Minimalist object representations or shape-proxies that spark and
inspire human perception of shape remain an incompletely under-
stood, yet powerful aspect of visual communication. We explore
the use of planar sections, i.e., the contours of intersection of planes
with a 3D object, for creating shape abstractions, motivated by their
popularity in art and engineering. We first perform a user study
to show that humans do define consistent and similar planar sec-
tion proxies for common objects. Interestingly, we observe a strong
correlation between user-defined planes and geometric features of
objects. Further we show that the problem of finding the minimum
set of planes that capture a set of 3D geometric shape features is
both NP-hard and not always the proxy a user would pick. Guided
by the principles inferred from our user study, we present an algo-
rithm that progressively selects planes to maximize feature cover-
age, which in turn influence the selection of subsequent planes. The
algorithmic framework easily incorporates various shape features,
while their relative importance values are computed and validated
from the user study data. We use our algorithm to compute pla-
nar slices for various objects, validate their utility towards object
abstraction using a second user study, and conclude showing the
potential applications of the extracted planar slice shape proxies.
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1 Introduction

Over the last few decades, great strides have been made in the area
of acquisition and modeling of 3D geometry. The underlying shape
representation is typically a collection of polygons, popular for their
generality, rendering efficiency, and amenability to geometry pro-
cessing algorithms. Unfortunately, such a representation can be ex-
pensive and, in itself, neither conveys the essence of the depicted
object nor aids in our understanding of the represented shape.

Artists and sculptors have long explored minimalist shape proxies
to highlight defining aspects of familiar objects (see Figure 2). As
humans, we effortlessly perceive the underlying shapes even from
such sectional representations, which greatly differ from their sur-
face representations. In fact, the sparse nature of these representa-
tions allows us to see otherwise occluded details and the absence of
unnecessary detail makes such artforms attractive, fascinating, and
sometimes mysterious. Evidence suggests that symbolic abstrac-
tions [Edwards 2002] dominate our mental model of objects. Thus
across cultures, we both recognize shape proxies quickly and tend
to communicate objects by drawing them as symbolic abstractions.

Planar section proxies are also motivated by medical and engineer-
ing visualization where section planes are used to illustrate the
interior details of complex shapes (see Figure 2). These planar-
sections often pass through anatomic landmarks or engineering fea-
tures such as channels or bosses, reaffirming our use of high-level
shape features like segments, symmetries, ridges and valleys to de-
fine planar sections in Section 4.

In geometry processing, model simplification [Cignoni et al. 1997]
and variational shape approximation [Cohen-Steiner et al. 2004]
remain the dominant modes of shape abstraction. Recently, there
has been work on shape abstraction using curve networks [Mehra
et al. 2009; de Goes et al. 2011]. These methods and their variants
evaluate the quality of an approximation by the geometric devia-
tion of the proxy from the original shape. In contrast, we aim to
explore shape abstractions that are based on human perception of
form. Given a shape S, our goal is to produce a proxy S using
planar sections of the shape, such that perceptually S and S are
comparable, while representationally |S | � |S|. Note that S are
S likely to be quite different from a purely geometric or topological
standpoint. The fundamental difficulty in proposing or evaluating
algorithmic solutions to such a problem is the lack of a computa-
tional model of our perceptual response system.

Figure 2: Planar sections in art ( c©Alexander Calder), sculpture
(wood puppet), design (section chair, c©Hebert Franco) and scien-
tific visualization.



Overview. We conduct a user study to gain insight as to how hu-
mans define planar section representations of various 3D objects.
We observe that humans share a consistent notion of abstraction us-
ing planar sections, and further the chosen planes are correlated to
geometric shape features (Section 3). Based on this study, one pos-
sibility is to select a minimal configuration of planes that captures
a given set of geometric features of the 3D shape, rather than ap-
proximating the object surface (Section 4). We show this problem
is NP-Hard (Appendix), discuss various design possibilities, and
propose a solution where planes are progressively selected to max-
imally capture shape features weighted by their importance. Each
selected plane reduces the importance of the features it captures
(so that subsequent planes cover different features) and favor new
features on the basis of orthogonality and symmetry relationships
among planes in the shape proxy. We then discuss geometric fea-
tures used in our realization (Section 5) and learn their relative im-
portance from the user-study data. Finally, we evaluate the results
of our algorithm on both user-study and novel objects using a sec-
ond user-study to show that planar proxies are indeed an easily rec-
ognizable shape abstraction (Section 6), before discussing potential
applications and future directions (Section 7).

Contributions. The key contribution of this paper is the introduc-
tion and exploration of perceptually motivated shape proxies using
planar sections. We accomplish this in many novel steps: a user
study to show the problem is perceptually well-defined, a mathe-
matical formulation of the problem we prove to be NP-Hard, an ef-
ficient approximate solution whose results are comparable to user-
defined proxies, a second user study to show that the generated pla-
nar section proxies are easily recognizable shape abstractions, and
explore potential applications.

2 Related Work

Perception and vision research strongly motivate our desire to rep-
resent 3D shape using planar sections. It has been shown that when
viewing 3D curves, a planarity assumption allows us to better re-
solve a mental 3D curve from its projected 2D image [Stevens 1981;
Todd and Reichel 1990]. This allows us to better understand curves
that are planar sections of a shape, and prevents a common misinter-
pretation of non-planar curves as planar curves with the same view
projection. Curvature along surface contours [Koenderink 1990] is
known to capture important shape information [Feldman and Singh
2005] and influence our segmentation of shape into salient parts,
suggesting that in reverse, both part segmentation and curvature ex-
trema are important cues in the creation of planar section proxies
by humans. We indeed observe this to be true in Section 3. Paral-
lel and perpendicular planar sections of a shape have been shown
to provide a better understanding of the position and orientation
of a surface compared to the shaded surface itself [Sweet and Ware
2004] and might explain the aesthetic appeal in planar section based
design (see Figure 2, Figure 5a). In the context of stylized sketching
from 3D models, Cole et al. [2008; 2009] study aspects of human
perception relating to depicting shapes using line drawings and con-
sistency among line strokes used by humans.

Geometric features range from low-level attributes like curva-
ture [Kalogerakis et al. 2007] that capture a local shape context to
higher-level global attributes such as symmetry planes [Mitra et al.
2006]. The computation of these features remain an important re-
search topic. Recent work in geometry processing [Kalogerakis
et al. 2010], like ours, attempts to take a black-box approach to
features that allows them to leverage existing algorithms and in-
corporate new and improved shape features. Most high-level shape
features have a natural family of planes that capture the feature as
discussed in Section 5.

Curve shape proxies have been used as a shape abstraction in tra-
ditional art for centuries. They are popular in graphics and non-
photorealistic rendering as expressive and compact visual prox-
ies [Strothotte and Schlechtweg 2002], and used as intuitive han-
dles for shape manipulation [Singh and Fiume 1998; Gal et al.
2009]. Collections of curves, often planar, are also the output of
a number of sketch-based modeling systems [Schmidt et al. 2009].
Recently, however, there have been attempts to automatically cre-
ate curve-based shape abstractions from 3D shapes [Mehra et al.
2009], model and manipulate shapes using 1D arterial snakes [Li
et al. 2010a], as well as to determine geometric relationships (such
as co-planarity or orthogonality) between these curves [Gal et al.
2009]. Our approach is complementary to these approaches as we
focus on understanding and creating good planar section abstrac-
tions.

Planar surface approximation addresses the problem of finding
planes as good proxies for a 3D shape. Such proxies have been
used for extreme simplification leading to billboard clouds [Décoret
et al. 2003], error bounded surface simplification [Cohen-Steiner
et al. 2004], and as impostors [Kavan et al. 2008] for lightweight
rendering. Our goal is to produce a very small number of planes like
billboard clouds, but instead of approximating the surface shape
most of our planes cut through the interior like polygon impostors.
In this regard, our approach is directly applicable to the automatic
generation of lightweight impostors (see Figure 13).

Manufacturing and acquisition or product fabrication often re-
quire the surface patches to be (nearly) developable [Kilian et al.
2008]. This process is greatly simplified when the patches are sim-
ply planar. Pop-up paper architectural models [Li et al. 2010b] and
furniture made from planar sheets [Willis et al. 2010] are exam-
ples of constructing piecewise planar representations of 3D shapes
for easy fabrication (see Figures 1e, 2). In reverse, real-world 3D
data is often acquired in the form of 3D planar cross-sectional slices
from which the 3D shape must be reconstructed [Ecker et al. 2007;
Liu et al. 2008] (see Figure 14). Also, planar shape proxies and
scaffolds provide a direct mapping to common 2D devices, mak-
ing the manipulation, perception and annotation of shape via these
proxies easier [Schmidt et al. 2009].

3 Planar Section Proxies Created by Humans

We conducted a user study to answer the following questions re-
garding how humans define planar section proxies:

1. Can humans, to their perceptual satisfaction, represent com-
mon 3D shapes using a small number of planar sections?

2. Is there a correlation among the planar sections prescribed by
different humans, for the same 3D shape?

3. How well are the user prescribed planar sections correlated
with the geometric features of the 3D shapes?

3D shapes can vary in complexity from a simple sphere, captured
by three orthogonal planes (see Figure 8-bottom-left), to an intri-
cately complex engine block (see Figure 2) that may require a large
number of planar sections even for a minimal representation. A user
study aiming to answer the questions above thus requires a repre-
sentative set of 3D shapes of manageable and comparable complex-
ity. These models should span various shape categories, such as
airplanes, cups or tables, and also have examples capturing shape
variability within each category. We found the models from the
Princeton 3D segmentation benchmark (PSB) [Chen et al. 2009]
suitable as each model is roughly axis aligned, well sampled, wa-
tertight, and creates well-defined planar sections either on the entire



object or per segment (see Figure 1). All objects were centered to
origin and normalized to unit box.

User study design. In a pilot study, we asked 5 artists and 13 am-
ateurs to interactively explore planar section proxies for presented
3D shapes. Without instruction, some tried to capture shape detail
by spending over half an hour to place upwards of 20 planes as reg-
ularly placed sections (see Figure 5). We empirically found that
most shapes in the PSB could be captured well using 5-10 planes,
requiring about 5-10 minutes/model. For the actual user study we
thus asked each participant to select planar sections with a soft limit
of 10 planes/model over a selected set of 19 models consisting of 5
cups, 5 airplanes, 5 tables, a chair, a machine part (bearing), a biped
(human) and a quadruped (donkey) (see Figure 4).

A single plane intersecting a closed manifold can produce a number
of disconnected contours. In some cases all the disjoint contours of
a planar section provide a useful abstraction of the shape, such as
the cross-section of the legs of the table or human feet in Figure 4.
Some users, however, specifically marked contours or partial con-
tours of interest for each plane, when given appropriate tools (as in
our pilot study). While the resulting proxies can be visually more
pleasing, the process is more time-consuming. Hence, for the actual
user study, we provided a conceptually simpler and more efficient
user interface where users simply picked a unique set of planes and
all the intersecting contours formed the planar section proxy.

User interface. The 19 models were displayed to 18 users in ran-
dom order so that participants were less influenced by prior models
when sectioning similar shapes. The users could tumble and zoom
the models using a conventional 3D view manipulation interface.
Planes were viewed as a plane widget (see supplementary demo)
with the section curves overlaid on the model or as a filled planar
section without the model. Users often toggled between the views
to see the model while placing and evaluating new proxy planes.

Planes could be added, removed, or edited at any time. We provided
three means of selecting planes: (i) snapping to axis aligned planes;
(ii) starting from one of the axis aligned planes, rotating the plane to
refine the azimuthal and polar angles,and translating the plane along
its normal direction; (iii) enabling a novel widget where a plane is
specified by 3 points than can be interactively moved directly on the
surface of the model. The second option was typically used when
a near axis aligned plane was to be selected, while third option
was employed when participants wanted to pick a plane passing
through visible features or landmarks. Users reported completing
the task in two or three sessions of around 30-45 minutes each and
felt the interface provided adequate control for the given task (see
supplementary demo) and were satisfied with the abstractions.

3.1 User study findings

SMALL NUMBER OF PLANES SUFFICE? Users remarked that they
did not feel constrained by the soft maximum, also evidenced by
the user study where only 5 planar-section proxies had more than 10
planes, and a maximum of 14 planes in one case (see Figure 5). The
mean and standard deviation of the number of planes used across
all users and models were 4.77 and 2.16, respectively (see Figure 3-
top blue columns). Thus, we observe that common 3D shapes can
be satisfactorily abstracted using a small number of planar sections
(question #1). Note that user #15 tended to use more planes than
others (mean 8.421, standard error 2.194), but exceeded the soft
maximum for only 2 models.

USERS CREATE CONSISTENT PLANAR SECTIONS? Figure 4-top
summarizes the results of our study. Each planar-section chosen
by a user is overlaid on the model as a faint curve. Thus, lines of
greater thickness and opacity indicate agreement among the pla-
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Figure 3: (Top) For each of the models, there was a clear con-
sistency among the slicing planes prescribed by the users. (Bot-
tom) We observed a strong correlation among the selected planes
with geometric features of the models (blue columns), while the cor-
responding learned weights (see Sections 4 and 5) are in green.

nar sections selected by different users to represent the same shape
(question #2). Next, we quantify this observation.

First, for each model, we group the planes prescribed by the differ-
ent users into equivalent groups based on their mutual distance (in
plane-space), and select a representative from each group. Specif-
ically, for a given model, we define a plane-likelihood function as
the sum of radial sigmoid functions defined around each plane be-
longing to the user defined proxies for the model. The fall-off ra-
dius is defined by the minimum of a feature size 0.1 and the mini-
mum distance between any two planes belonging to the same proxy
over all users (0.059). Groups of visually equivalent planes are then
represented by the local maxima of this plane-likelihood function,
which we evaluate by discretizing plane-space (see Section 4).

Next, we define the super proxy simply by picking points in the dis-
crete plane-space whose plane-likelihood is above a given threshold
(4.5 in our experiments). Figure 4-middle shows the super proxy on
our input data indeed results in a visual proxy similar to many of the
user defined proxies. The color of the super proxy indicates their
plane-likelihood from hot (red) to cold (blue).

Finally, for each user, we measure the deviation from the general
collective as the number of planes in their proxy that do not con-
tribute to the super proxy (see Figure 3-top orange columns). Over-
all, we observe that a large number of the selected proxy planes are
consistent across users.

USERS CAPTURE GEOMETRIC FEATURES? We hypothesize that
users prescribe sectioning planes aligned to geometric features of
the shapes (question #3). This was verbally reaffirmed post-study
by two of our artist users. We also compute representative planes
for various geometric features (see Section 5) for the user study ob-
jects, and test how well such planes align with the user prescribed
planes. Figure 3-bottom indicates that about 1% of the user pre-
scribed planes (17 of 1630) remain unexplained by the chosen ge-
ometric features (note that a sectioning plane can be explained by
multiple features, and hence the column sizes add up to more than
unity). The heights of the (blue) columns give a qualitative impor-



Figure 4: User study planar section proxies as faint lines aggregated on the models (top) from which a super proxy is computed (middle).
The hot (15 users) to cold (4 users) gradient indicates user agreement on the depicted planes. Note the correlation between the proxy created
by our algorithm (bottom) and the user agreement on depicted planes (middle).

tance of the features. However, such a reasoning ignores that often
the choice of planes influences subsequent planes. In Section 5,
we describe a principled approach to learn the importance of the
features, while accounting for the inter-dependencies.

3.2 Discussion

Inherent shape knowledge. In certain cases, the participants
use their inherent knowledge of the shapes to select the section-
ing planes, without any apparent correlation to the geometry of the
models. For example, for the chair shown in Figure 5, all users sim-
ply represented the seat with a single planar section despite the geo-
metric concavity at the bottom of the seat (7 of 16 human-authored
planes intersecting the seat had a hole, we believe these users did
not realize they captured a concavity as this would require inspect-
ing the chair from below). None of the users marked two planes to
indicate both the chair seat and the presence of a concavity below,
indicating the use of semantic knowledge of a chair in ignoring the
concavity.

Of the 17 human-authored planes in the entire study which capture
no geometric features we consider, 8 of these planes are for the don-
key model (see Figure 5). A number of these user planes roughly
pass through the ears, eyes or where one might imagine the don-
key’s mouth. The variability of these user planes further indicates

Figure 5: User proxy problems: (left) regular sections in our pi-
lot study; (middle) inadvertently capturing concave under side of
chair; (right) planes covering no geometric feature on the donkey.

the use of model semantics and the lack of a clear visual landmark
in selection of the planes. Such cases being sparse (see Figure 3),
we focus only on the geometric aspects of the planar proxies, with-
out requiring additional semantic knowledge.

Design choices. Our study takes about 2-3 hours/user, and so
we only enlisted dedicated users in a controlled experimental setup,
instead of devising mechanisms to deal with noisy data with high
variance. We did consider using Mechanical Turks similar to Cole
et al. [2009], but were unable to devise a fair experiment that can
be completed in a short time. For the PSB dataset, we observed
that from around 12-15 users the super-proxy set, along with the
corresponding learned weights (see Section 6), stabilized. Hence,
we capped our user study at 18 users.

4 Algorithm

Our goal is to produce a similar proxy S of shape S using a small
number of planar sections, such that S and S are perceptually
equivalent. This is an ambitious goal given the lack of a suitable
computational model of perception. Several seemingly natural for-
mulations turn out to be insufficient (see Figure 6): (i) An ineffi-
cient but conceptually simple solution is to consider the

(n
3
)

planes
defined by the n mesh vertices (for a poly-mesh model) and choose
those maximizing a combination of geometric functions such as,
sectional area, length of the section perimeter and total curvature
along the section perimeter. While maximizing these functions can
locally optimize planar sections, globally they often have no per-
ceptual significance. (ii) Another simple solution is to select axis
aligned planes, or principal component (PCA) planes, globally or
locally for all segments [Chen et al. 2009]. The results are unsatis-
factory on two accounts. First, such axes and planes do not explic-
itly capture shape symmetries or geometric landmarks, and second,
a simple aggregate of these planes ignores inter-plane relationships,
which are especially critical when choosing a minimal set of planes.
(iii) Another approach is to compute ridge and valley features for
the mesh, making cuts in the direction of the surface normal. Where
ridges and valleys are defined some geometric landmarks will be



Figure 6: Simple alternate algorithms give rise to non-intuitive
planar slices. (Right) Results from our approach consist of few
slices which capture many important mesh features. (Bottom-left
inset) A planar section of maximum area seen within a 2D cross-
section can cut a shape at an unintuitive angle.

captured, however, once again the set of planes is neither minimal
nor accounts for inter-plane relationships.

Instead, we design our algorithm based on the observed consis-
tency between shape features and planes selected in our user study.
We hypothesize that choosing a small number of planes to maxi-
mally cover the characteristic object features produces a good pla-
nar proxy. We show the problem of finding the minimum set of
planes that covers a given feature set is NP Hard (see Appendix).
Further, the minimum solution is not always perceptually prefer-
able, since humans also factor in geometric relationships between
selected planes when defining a proxy. We thus propose a frame-
work where an extendable set of geometric features F (see Sec-
tion 5) are used to populate a parameterized plane-space. We then
iteratively select planes corresponding to the most densely popu-
lated regions of plane-space similar to the computation of the super
proxy. Selected planes also re-adjust the plane-space with respect
to covered features, introducing new features to capture geometric
relationships between the selected planes and those that will subse-
quently be selected. Our algorithm runs in two phases: (i) initial-
ization involving discretizing and populating the plane-space using
feature set F , and (ii) iteratively selecting planes to cover any un-
covered and populated regions of the plane-space.

i) Initialization. We parameterize any plane P in the normal-
intercept form using its normal n and a scalar d (≥ 0) such that
any point p ∈ P satisfies nT p+ d = 0. Representing n in polar-
azimuthal form using (θ ,φ) with θ ∈ [0,2π) and φ ∈ [−π/2,π/2],
we represent each P in a plane-space spanned by (θ ,φ ,d). We
discretize the space of all possible planes by partitioning it into a
collection of bins. In our experiments, we sample θ and φ every
2 degrees, and d every 0.02 units (all models are centered and nor-
malized to a unit sized box). Initially, all the bins are empty.

We populate the plane-space bins using candidate feature planes.
Our framework handles a collection of geometric features F :=
{ f1, f2, . . .} extracted from an input mesh. Each feature fi ∈ F has
an importance weight wi, which is learned from the user study data
set (see Section 5).

Suppose feature fi is such that it can be defined by the single plane
nT

f p+ d f = 0. Each point in plane-space (θb,φb,db) has a corre-
sponding plane nT

b p+ db = 0 (note the mapping from plane-space
to plane is surjective, as at singularities φ = −π/2,π/2 multiple
bins map to the same plane). We define the distance between fea-
ture fi’s plane and bin b’s plane as

dist( fi,b) := arccos(nT
fi

nb)+ | d fi −db | . (1)

Discretization of a candidate plane to its corresponding bin in

plane-space produces aliasing artifacts. Addressing this, we dis-
tribute the effect of a feature fi ∈ F to a local collection of bins
within an influence radius ri (set to 0.1 in our implementation). We
define fi’s coverage of bin b as

cb
i := 1−dist( fi,b)/ri, (2)

for those bins b where dist( fi,b) < ri, and set cb
i = 0 otherwise.

Note that since the model is normalized, we treat the contributions
from angular and distance deviations equally. The final weight for
each bin b is then taken as the accumulated contribution over all
the features as wb := ∑ fi∈F (wi · cb

i ). Figure 7-top shows the plane-
space after initialization with features from the human model with
the bins colored according to their respective feature types.

Features can take different forms in the plane-space, based on
whether they are one of three types: point, capsule or spindle (see
Figure 7-top right). Point forms are used to represent feature types
described by a single unique plane, such as a symmetry plane. For
other types of features, such as the global PCA planes, the plane’s
normal direction is important but the particular d value is not. To
capture this acceptable variation in d (i.e. ensure intersection with
mesh segments relevant to the feature), we use the capsule form in
plane-space. To create this form, we use a slightly modified form of
Equation 1, choosing a d f value in the acceptable range closest to
db to minimize the distance. Finally, feature types with a dominant
axis such as segment PCA axis features and symmetry axis features
we capture using the spindle form. For this form we allow variation
in the plane’s normal (varying d accordingly so the entire axis in-
tersects the plane). We again rely on a modified form of Equation 1
where we choose a normal n f that is both orthogonal to the axis and
minimizes distance to bin b’s plane. Our system can be extended
to support new feature types with minimal effort by encapsulating
them with one of these three forms.

ii) Covering the plane-space. Next, we select planes to cover the
populated bins C . We maintain the current set of selected bins in P
starting with an empty set P← /0. In each iteration, we choose the
bin b∗ ∈ C with maximum coverage value, provided wb∗ is above
a threshold weight, set to 1 in our experiments. The chosen bin is
added to the current set P ←P ∪b∗.

We then adjust the weights of the remaining bins to account for the
selection of bin b∗. For each feature f j ∈ b∗, we adjust the weights
of each of the other bins containing f j. Specifically, we identify
bins bi ∈ C that are touched by feature f j, and for each we remove
its contribution to weight wbi : wbi ← (wbi −w j · cbi

j ).

5 Shape Features

We describe our user-study guided feature set selection, while not-
ing that other features can easily be incorporated if they take one of
our plane-space forms. We learn the relative feature weights using
user study data to capture their relative perceptual importance.

Principal planes. The PCA axes of the shape and of the individ-
ual segments define the oriented bounding box of the shape and its
segments, respectively. One or more of these planes captures the
principal directions. Based on the relative strength of the principal
directions (eigenvalues of the covariance matrix), we add features
as follows: (i) for a model with a single dominant principal axis,
we use a single spindle form for the axis, (ii) for a model with two
dominant directions, we use a single plane feature (capsule) with
normal pointing in the direction of the least significant eigenvector,
otherwise (iii) we use 3 planes (capsules), each having a normal
in the direction of each eigenvector. In the case of segment PCA
planes which take capsule forms, we constrain the range of d value
so that the segment will be intersected.
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Figure 7: Plane-space (top) after initialization, populated with the
set of features (bottom) detected for the human model, has three
coverage forms: point, capsule and spindle. Learned weights scale
the importance of each feature type, and we visualize this by scaling
the size of each plane-space bin.

Global planes. Since the initial database models are mostly ori-
ented, the global X ,Y,Z coordinate axes help to ground the shape
and fix its orientation with respect to the environment. Their rep-
resentative planes, like PCA planes are represented using capsule
forms and can thus vary in d value.

Ridge and valley curves. These curves represent extrema of sur-
face curvature on the shape, can be efficiently computed for de-
tecting multi-scale features, and most importantly are believed to
capture geometrically and perceptually salient surface features. We
detect ridge and valley curves using [Ohtake et al. 2004]. A greedy
algorithm splits these curves into line segments, treating each as a
spindle feature and giving each a weight based on segment length.
Since each segment is a spindle feature, a coplanar group common
to a larger ridge or valley feature (e.g. a ridge along the rim of a
cup) will intersect in plane-space (with maximal coverage of these
ridge segments). In our implementation we chose to use a strict
threshold for detecting ridges and valleys, instead of weighing each
by a measure of strength (e.g. average principal curvature along the
curve). By filtering out many potential ridges and valleys whose
average curvature is low, we avoid the processing associated with
adding these relatively insignificant features to the plane-space.

Symmetry planes and axes. Symmetry is strongly connected to
shape abstraction and perception, and often is persistent across vari-
ations in object collections relating to part hierarchies [Simari et al.
2006]. We consider global reflective and rotational symmetries in
our framework. We detect global symmetries [Mitra et al. 2006]
for the entire shape. Reflective symmetries are captured well by a
planar section defined by the symmetry plane itself. The symmetry
is also visually clear in the shape contour of a planar section that is
perpendicular to symmetry plane. We add symmetry planes to the
plane-space as point forms, and symmetry axes as spindle forms.

Perpendicular supports. We observe from the user-study that it
is desirable to capture spindle features like a PCA axis or global
symmetry axis of a model (see Figure 7) using a pair of orthogonal
planes, with the spindle being their intersection line.

If the maximal bin b∗ covers a spindle feature with axis direction
a and intersection point p, we add a perpendicular support feature
fperp. Feature fperp defines a plane feature that also intersects the
axis, but in a direction perpendicular to the plane defined by b∗. The
parameters for our supporting feature nperp and dperp are given by:

nperp = nb∗ ×a f and dperp =−pT nperp.

If dperp is negative we flip the signs of both nperp and dperp to keep
all d values non-negative. Perpendicular supports are point forms in
plane-space. Note that each spindle feature is allowed to generate a
maximum of one perpendicular support.

Symmetric supports. In order to retain planar symmetries of the
model, if we select a plane that passes through a symmetric segment
that is not almost perpendicular to the symmetry plane (< 80◦ in our
implementation), we add its reflected plane, if not already selected,
as a point-form feature to plane-space to increase the likelihood that
it will be selected.

Learning weights

In absence of a computational model for evaluating planar abstrac-
tions, we use the user study findings to learn relative weights for the
various geometric features. We do this in two parts: (i) we obtain a
representative set of planes called the super proxy, and (ii) we de-
rive a large number of linear inequalities from this set, and apply a
constrained optimization solver to learn the feature weights.

First, for each model, we form a set of planes called the super proxy
using the planes chosen by the 18 users (see Section 3).

Next, we form a linear system to apply the solver by mimicking
our algorithm, i.e., the selection process is the same – users add
planes one by one, in order of maximal feature coverage, while the
value of each plane is sufficiently high. For the super proxy this
importance ordering of planes is captured by their user agreement
value (see Section 3). We derive two types of inequalities. The first
type are for each plane in the super proxy. For the 10 feature types
in our system, using a plane selection threshold of 1, super proxy
plane inequalities take the form:

10

∑
i=1

wiCi ≥ 1. (3)

Note that these inequalities are created in order of plane selection
since plane selection influences subsequent inequalities (i.e. per-
pendicular and symmetric support features may be introduced). The
left-hand side is the value of each super proxy plane, and is the sum
of the total coverage C of each of the 10 types of features multiplied
by the unknown weights. Each Ci is calculated by summing the
coverages across each feature of type i in the model: Ci = ∑ j c j f j,
where each j indexes a feature of type i, c j is the coverage of fea-
ture j by the plane (Equation 2), and f j is a feature-specific scalar
(e.g. for ridges, f j scales by the length of ridge j).

Generally, not every feature is captured by the super proxy. After
processing each plane in the super proxy set and covering each of
the mesh features in the plane space, there may be (and usually al-
ways are) a number of bins containing one or more features. These
bins correspond to all planes that were not selected, and so their
total value in terms of the features they cover must be below our



Figure 8: Algorithmic results on a variety of models from the PSB (see supplementary for full set). Note the consistent behavior on cups,
tables, and other models similar to those in the user-study (see Figure 4) as well as completely novel model examples like heads, vases and
birds.

threshold. For each of these bins, which map to a plane in model
space, we have the second type of inequality:

10

∑
i=1

wiCi < 1. (4)

We now choose weights for the features such that they satisfy all the
inequalities across all models in the study. Our study consisted of
18 users and 19 models, and a total of 1630 planes were authored by
all users across all models. Of these, 101 planes were selected as the
representative super proxy set across all models. This set of planes
formed 101 inequalities of the first type. Most of the 1630 user au-
thored planes are captured by the super proxy, indicating consistent
plane selection (see Figure 4). Our system contained 107992 in-
equalities of the second type, one for every bin not selected by the
super proxy planes for each model.

A simple solution can involve a least squares approach to best meet
the inequality constraints. However, in our case we are interested
in satisfying the inequality constraints, rather than forcing equal-
ity relations, e.g., we do not differentiate between relations once
they cross the threshold value. The least squares approach resulted
in many zeroed out coefficients as the inequalities were driven to-
wards equalities. Such an overfitting does not help as the set of
weights do not generalize in producing useful results on new mod-
els, especially in the case where new models contain features that
may be under-represented in the training set.

Simultaneously satisfying all of the inequalities is infeasible. We
found numerous cases where planes in our super proxy did not have
strong feature coverage. These planes corresponded to inequali-
ties of the first type where the sum of total coverages ∑

10
i=1 Ci was

low. Intuitively, as these planes do not cover features well, they
are not very well suited for deriving feature weights. To address
this, we progressively removed inequalities derived from the su-
per proxy with low total coverage, until a solution was feasible.
When ∑

10
i=1 Ci > 1.5, the system becomes feasible and we use 74

inequalities from the super proxy set. For many planes in the su-
per proxy, we observe a strong correlation between feature cover-
age and user agreement (see Figure 3). Interestingly, our algorithm
uses the learned weights to consistently pick planes of high user

agreement, while leaving out planes of low user agreement (see
Figure 4).

To regularize the solution, we use an objective function for the
solver that minimizes the difference of each weight from 1 in or-
der to be well balanced across each type of feature, specifically,
∑

10
i=1(wi − 1)2. To determine the weights (see Figure 3) we used

MATLAB’s ‘fmincon’ function, a constrained optimization solver
which relies upon the active set method [Powell 1978].

6 Evaluation

In order to evaluate our algorithm, first we used the learned weights
to recreate the planar slices for the 19 models from the training
set (see Figure 4-bottom). Note the general correlation between the
planes chosen by our algorithm and the level of user agreement for
planes belonging to the super proxy.

In a more demanding test, we used the learned weights to create
planar slices for all the models from the PSB. Figure 8 shows mod-
els similar to those in the user study dataset and is a validation of the
learned weights, as well as showing visually compelling results of
our algorithm on many new models (see supplementary material).
As our goal is to produce perceptually sound planar slice abstrac-
tions, we performed another user study to judge the quality of the
produced results, as described next.

Shape recognition user study. We conducted a user study involv-
ing 66 users, with ages ranging from 16–50, where each partici-
pant was shown one of 5 representations randomly selected from
11 models (6 from initial user study, 5 new without human anno-
tation) which were shown in randomized order (see supplementary
material). Users were asked to identify the model, and their re-
sponse time was recorded (up to 5 seconds). Each model represen-
tation was rendered from the same pre-selected viewpoint and was
either: a mesh rendering, algorithm generated planar slices, human
annotated planar slices, global PCA planar slices, or random pla-
nar slices. Our results for response times and recognition rates are
summarized in Figure 9.

For the mesh rendering, algorithm generated planar slices and hu-
man annotated planar slices, recognition rates were consistently



Figure 9: (Top) Average recognition times of objects and planar
section proxies, for each of the representations. (Bottom) Normal-
ized error rates in identifying objects across each representation.

high (> 90%) and reaction times consistently low (less than 2 sec-
onds), averaged over all 11 models and all users. This confirms two
of our predictions: planar slices are a recognizable abstraction of
common objects, and that our algorithm produces comparable re-
sults to human annotations. An interesting exception was the Max
Planck model (model #317 in the PSB, rightmost model in Fig-
ure 9), where recognition rates were between 66–80% for all pla-
nar slice abstractions but 100% for the mesh rendering. In other
occasional failure cases, users marked the ‘donkey’ as a ‘pig’ or
‘sheep’, or a ‘vase’ as an ‘ashtray’. Absence of a scale and no prior
information about what to expect partially explains such erroneous
entries. The global PCA planar slice and random planar slice rep-
resentations were notably much worse, with average recognition
rates of 57% and 38%, and average reaction times exceeding 4 sec-
onds (twice that of the algorithm generated and human annotated
abstractions).

Persistence of abstraction under model perturbation. Persis-
tence and resilience to shape resolution and perturbation are im-
portant properties of shape abstractions. In our framework, this
resilience is largely handled by the algorithms that extract our set
of geometric features and some degradation in the quality of their
performance is expected. Figure 10 shows that our algorithm pro-
duces perceptually persistent proxies when applied to decimated or
noisy versions of the original mesh. As expected, planes of lesser
importance are perturbed or excluded, since these features are not
dominant. Also, the creation of many spurious features (e.g., ridges
emerging from noise applied to vertex positions) is unlikely to re-
sult in new planes, as their weight are scaled by their lengths.

Planar-section aesthetics. Viewers generally found our algorith-
mic results in Figures 4 and 8 to be of high quality and recogniz-
able as shape abstractions. Despite this, neither our result nor the
human-derived super proxy is as magical as some of our motiva-
tional images (see Figure 2). We believe the major reasons are:
(i) an intangible artistic eye for composition that we did not set out
to capture; (ii) our results echo the PSB, which was designed not
for aesthetic reasons but to capture a range of shapes with consis-
tent mesh topology, resolution and size; (iii) sections as seen in the
motivational images are partial planar sections of the mesh, (iv) ar-
tistically created planar section contours sometimes deviate from
the planar section to partially conform to the shape silhouette.

perturbation simplification

Figure 10: Persistence of model perturbation: model (center) un-
der increasing Gaussian noise moving left 0.005, 0.01 standard de-
viation and increasing decimation moving right 20%, 40%.

Our program (supplementary material) can be used as an interac-
tive tool enabling artists to compose their own shape abstractions
(see Figure 13-top left). We chose not to require our users to define
partial planar sections to keep our user interface simple and the user
study manageable. For fair comparison, our results in Figures 4 and
8 are shown as complete and unprocessed planar sections. We do,
however, address the automatic computation of partial sections in
three ways: (i) We note that segmentations in objects often indi-
cate rigid parts that can articulate with respect to each other. We
capture this property within our abstraction by cutting the planar
section contours at segmentation boundaries and capping them with
tangent-continuous cubic Hermite splines into multiple overlapping
but topologically disjoint planar sections. (ii) We only retain por-
tions of the contours that pass through segments whose features
are covered by the given plane, and cap them smoothly into closed
contours. (iii) We observe that planar sections provide the strongest
shape cue along the section contour where the surface normal of
the shape is near perpendicular to the plane normal. We verified
this by examining the distribution of the angle between the surface
normal along the section contour and the plane normal for the su-
per proxy planes (e.g., > 70% of curve length has angle > 70◦, see
supplementary material). We can thus retain and cap portions of the
section contour where the angle between the surface normal and the
plane normal exceed a specified range. While it is straightforward
to allow users to interactively edit parts of section contours to con-
form to model silhouettes, we leave the automatic inference of such
hybrid planar sections to future work.

Optimizing selected planes. We propose three simple ap-
proaches to optimize the generated proxies (illustrated in Fig-
ure 11): (i) Plane refinement: The discretization of plane-space can
cause selected planes to minimally deviate from the features they
capture. A simple bounded linear search through plane-space in
the vicinity of a selected plane to maximize section area or perime-
ter improves the visual quality of the planar section. In our im-

plane refinement segment coverage adaptive refinement

Figure 11: Planar sections (top) can be optionally optimized to im-
prove abstraction quality (bottom). From left to right: locally max-
imizing section area, using additional planes for uncovered seg-
ments, reducing weight threshold to choose additional planes.



plementation, this optimization is always performed. (ii) Segment
coverage: Our algorithm does not guarantee that all segments get
covered. A user may optionally enable algorithmic plane selection
to continue beyond the threshold only for planes that section uncov-
ered segments. (iii) Adaptive thresholding: The user may wish to
include a desirable plane below the default threshold that the algo-
rithm did not include, or have a specific number of planes in mind.
Tuning the threshold allows users to refine the planar proxies cre-
ated by our algorithm to select more (or fewer) planes.

Performance. We include a demo (code will be made public) of
our OpenGL/Qt application. The running time of our algorithm is
dominated by the number of features detected for a given model as
populating plane-space for each feature is expensive and scales lin-
early (typically 50-200 features were detected on models from the
PSB). Our algorithm typically takes 5-10 seconds for most models
on a 2.8GHz AMD Phenom II processor.

Limitations. While our approach produces reasonable results and
is extendable, it has some fundamental limitations, which we illus-
trate in Figure 12. Our algorithm is only as good as the quality
of features it is able to extract. Excessive and noisy features (the
armadillo), or the absence of features (e.g., bust) can result in too
many or too few planes being selected. Articulated figures can be
problematic since features do not line up well along planes, and
produce disjoint abstractions (e.g., right arm of running woman).
Excessively curved structures like the chair with a curved backrest
are not ideal for representation with a minimal set of planar sec-
tions. Despite these failures, we believe that planar section proxies
are a conceptually useful abstraction and that our algorithm pro-
vides a worthy first attempt at their construction.

Figure 12: Limitations: Imperfect results for articulated poses,
models with highly curved characteristics components, or models
that are overly smooth lacking clear geometric features.

7 Discussion

Potential applications. Planar section proxies have numerous
applications, each of significant scope, a few of which we briefly
show to illustrate the practical potential of this shape abstraction.

i) Paper statues and puppets are appealing figure abstractions that
can be physically constructed from planar section proxies (see Fig-
ure 13). A paper statue is made by physically printing, cutting and
assembling the 2D contours of a planar section proxy. Our program
automatically marks the intersection line between two planar sec-
tions on each section to be cut from opposite sides so they can be
interlocked as shown in Figure 13. Interactive control on the meet-
ing point and direction of cut on the planar sections makes assem-
bling multiple intersecting planes easier. All cuts are color coded
to aid assembly. We are also able to create articulated puppets by
automatically cutting section contours at segment boundaries and
creating Hermite curve capped and overlapping partial contours.
These contours are physically pinned in the middle of their overlap
creating a hinge joint. The car in Figure 13-top left, additionally
connects section contours for the wheels with an axle and floating
section contours in the front of the car to the car body with struts.

annotation

paper puppets

artist created
abstraction

interlocking cuts

Figure 13: Planar slices produced by our algorithm can be used
for artist created abstractions, annotations, or for paper puppets.

Partial sections and the various connectors for the car were interac-
tively authored in about 15 minutes from the default planar section
proxy. A comprehensive approach to creating complex multi degree
of freedom functional models is subject to future work.

ii) Poly-postors. Planar section proxies are also invaluable as poly-
postors for lightweight rendering of crowds [Kavan et al. 2008]. A
texture is created for the front and back sides of each plane by ren-
dering the model orthographically for each direction (see Figure 13
top-left). Our algorithm can create effective poly-postors by select-
ing planes below the default threshold until the difference between
the silhouette of the poly-postor and the input model for a set of
views is acceptable.

iii) 3D shape annotation is an important problem in scientific vi-
sualization and education. While it is easy to project 2D strokes
onto the underlying 3D shape in a given view, often annotation oc-
curs in the space proximal to the 3D shape to indicate dimensions
or to avoid obscuring the region being annotated. In such scenar-
ios [Schmidt et al. 2009], the annotation has no 3D representation
and becomes meaningless when the current view is changed. An
invisible planar section proxy, however, provides a natural set of
3D planes onto which annotations can be projected based on the
alignment of the plane to the current view, and the proximity of
the projected annotation to the section contour (see Figure 13-top
right). While the figure illustrates the 3D-ness of the annotations
with excessive foreshortening, in practice past an oblique angle of
30◦, text annotations billboard in place or rotate about spindle fea-
ture planes to improve readability.

iv) Compact representation. Planar section proxies, being com-
prised of a small set of planes and 2D contours or image masks in
those planes, are computationally compact. The surface reconstruc-
tion algorithm of [Liu et al. 2008] naively applied to a few planar
section proxies shows both the potential to reconstruct the original
3D shape and issues of topology that must be addressed by such a
surface reconstruction algorithm (see Figure 14).

Conclusion and future work. Inspired by the consistency of
abstractions produced by human subjects during our initial user
study, we developed a computational approach to create geomet-
ric feature-guided abstractions of man-made shapes using only a
handful of planar sections. The formulation is flexible and di-
rectly incorporates a variety of shape features. In the absence of



Figure 14: 3D shape reconstructed from planar section proxies
(overlaid in blue) using [Liu et al. 2008].

any suitable computational model of human perception, we learned
the relative preference weights for various features using our user
study data. We tested our algorithm on a variety of input models,
and presented robustness results with respect to noise and varying
mesh resolution. Finally, in the course of a conducted survey, we
observed that both recognition quality and efficiency of abstracted
models are comparable to those of the source models.

Although recent efforts in computer graphics have investigated re-
lations and importance of 3D geometry to perception and recogni-
tion, a lot remains to be done before we develop a good understand-
ing of the complex workings of our recognition system. Our work
using planar section abstractions is a small step in this direction.
In the future, we plan to explore possibilities of directly including
additional requirements, e.g., view coverage, importance weighted
abstraction, as well as other feature types such as curve skeletons,
into our framework. In terms of applications, it will be interesting
to explore the usage of planar proxies to shape recognition, par-
ticularly in authoring systems for retrieving model parts from the
web, where predominantly, keyword based searches are currently
employed. Our abstractions, though stable under small changes,
usually change geometrically and topologically under larger shape
variations, hinting at the need for an appropriate perceptual distance
measure for comparing different planar abstractions. Finally, we
plan to explore planar proxies towards interactive 3D sculpturing.

Acknowledgements. We thank Doug DeCarlo and Wilmot Li
for interesting discussions, the anonymous reviewers for their help-
ful feedback, MITACS, GRAND and KAUST research collabora-
tion network for funding the work, and the many participants of the
user studies for their time. We are also grateful to Chantal Timms,
Sawsan Alhalawani and Anastasia Khrenova for helping to realize
the paper puppets in Figures 1 and 13.

Appendix: Minimum Planar Section is NP-Hard

We show that finding a minimum planar section (MPS) that covers
a set of shape features is NP-Hard by reducing the classic NP com-
plete minimum vertex cover (MVC) problem to MPS in polynomial
time. Formally, given a graph (V,E) a k-cover is a set of k vertices
in V such that every edge in E has at least one incident vertex in the
set. The MVC problem is to find a k-cover with the smallest k.

We construct an input shape to the MPS problem as a collection of
|E| disjoint cylinders. The shape features are thus the |E| cylindri-
cal axes (the heights and radii being irrelevant). We will construct
every cylindrical axis Ce to correspond to an edge e ∈ E such that:
Property 1: Axes Ce and C f are co-planar iff e and f are adjacent.
These axes will be defined as the intersection lines of |V | planes
representing the vertices of the graph. We first define the plane nor-
mals such that:
Property 2: Any three normal vectors ni, of planes i ∈ 1..|V |, are
linearly independent. The set of vectors n1..n|V | arranged in a cone
around the Z axis, where ni =< cos(2πi/|V |),sin(2πi/|V |),1 >,
satisfies this property. Thus any axis C(i, j) = niXn j is non-zero.
Given distances to the origin di and d j for planes i and j we can

fix a point p(i, j) on C(i, j) as p(i, j) =
(d j∗(ni.n j)−di)ni+(di∗(ni.n j)−d j)n j

(ni.n j)2−1 .
Any point p(t) on C(i, j) is thus p(t) = p(i, j)+(niXn j)t. The inter-
section of axis C(i, j) and C( j,k) is now defined by di = ni.(p( j,k)+

t ∗ (n jXnk)). We define intersect(i, j,k) to be the parameter t
along axis C( j,k) where it intersects C(i, j). Rearranging equa-
tion 1: intersect(i, j,k) = (di − ni.p( j,k))/ni.(n jXnk). Note that
ni.(n jXnk) 6= 0 by Prop. 1. The distances to origin di for the planes
i ∈ 1..|V | is fixed such that:
Property 3: The intersection axes niXn j and nkXnl of any four dis-
tinct planes i, j,k, l do not intersect. We perform this assignment
iteratively through the planes i from 1..|V | setting distance di as:
Enumerate every permutation of planes j,k, l whose d values have
been set (i.e. j,k, l < i). For each permutation j,k, l we compute the
d for plane i at which C(i, j) and C(k,l) would intersect. We add this
value of d = ni.p( j,k)+ intersect(l, j,k)∗ (ni.(n jXnk)) (from equa-
tion 1) to a set Di of forbidden d values for plane i. We then set di
to be any arbitrary value not in Di.

It is easy to see Property 1 holds for the above construction: If axes
Ce and C f are adjacent at a vertex vi, they lie in plane i and are thus
co-planar. Conversely, any co-planar axes must either be parallel or
intersect. By Property 2 no two cylindrical axes are parallel and by
Property 3 two axes can only intersect if they are adjacent.

Lemma 1: Any set of k planes that cover the cylindrical feature axes
of this shape is equivalent to a k-cover of the graph. Proof: Given a
k-cover its easy to see that if we pick the planes corresponding to the
vertices in the cover, we will cover all feature axes corresponding to
the graph edges. Given a set of k planes that cover the |E| symmetry
axes, we note by Property 1 that for any plane to contain two or
more axes, the edges corresponding to the axes must be adjacent
and the plane must correspond to their common incident vertex. We
add this vertex to our vertex cover. Finally, any plane that contains
only one symmetry axis C(i, j) can be rotated around C(i, j) to match
the vertex plane i or j and we can add either vi or v j to our vertex
cover. As a consequence of Lemma 1 and our O(n4) reduction,
MPS=MVC.
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