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Abstract

The concept of symmetry has received significant attention in computer graphics and computer vision research in
recent years. Numerous methods have been proposed to find, extract, encode, and exploit geometric symmetries
and high-level structural information for a wide variety of geometry processing tasks. This report surveys and
classifies recent developments in symmetry detection. We focus on elucidating the key similarities and differences
between existing methods to gain a better understanding of a fundamental problem in digital geometry processing
and shape understanding in general. We discuss a variety of applications in computer graphics and geometry
processing that benefit from symmetry information for more effective processing. An analysis of the strengths and
limitations of existing algorithms highlights the plenitude of opportunities for future research both in terms of

theory and applications.

1. Introduction

The mathematical sciences particularly exhibit order, sym-
metry, and limitation; and these are the greatest forms of the
beautiful. - Aristotle

Symmetry is a universal concept in nature, science, and
art (see Figure 1). In the physical world, geometric symme-
tries and structural regularity occur at all scales, from crystal
lattices and carbon nano-structures to the human body, archi-
tectural artifacts, and the formation of galaxies. Many bio-
chemical processes are governed by symmetry and as a re-
sult we experience a wealth of biological structures that ex-
hibit strong regularity patterns. This abundance of symmetry
in the natural world has inspired mankind from its origins to
incorporate symmetry in the design of tools, buildings, art-
work, or even music. Besides aesthetic considerations, phys-
ical optimality principles and manufacturing efficiency often
lead to symmetric designs in engineering and architecture.

Geometric data, acquired via scanning or modeled from
scratch, is traditionally represented as a collection of low-
level primitives, e.g., point clouds, polygon meshes, NURBS
patches, etc., without explicit encoding of any underlying
high-level structure. Finding symmetries in such geomet-
ric data is thus an important problem in geometry process-
ing that has received significant attention in recent years.
Numerous applications immediately benefit from extracted
symmetry information, e.g., shape matching, segmentation,
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Figure 1: Examples of symmetry in nature, engineering, ar-
chitecture, and art.
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retrieval, geometry completion, beautification, meshing, or
procedural modeling.

This survey reviews the state-of-the-art in symmetry de-
tection methods for geometric data sets. We introduce basic
mathematical terms and present various high-level criteria to
organize existing work into a set of categories, emphasizing
their similarities and differences (see Table 1). We hope that
this comparative survey will help readers navigate through
the constantly expanding literature on symmetry detection
and inspire researchers to contribute to this emerging field in
the future.

The rest of the survey is structured as follows: In Section 2
we start with a discussion of the classical mathematical the-
ory of symmetry groups that characterizes the structure of
globally and exactly symmetric objects. In Section 3 we
look at more general cases including partial and approximate
symmetry, which are particularly relevant in practical appli-
cations in computer graphics and vision. The main part of
this paper surveys different algorithms for symmetry detec-
tion (Sections 4-7) with a special focus on partial symmetry
detection methods (Section 6). We then examine what types
of geometrical structures these different algorithms discover
and how symmetry information is encoded (Section 8). Fi-
nally, we discuss various applications of symmetry detection
(Section 9) and conclude with thoughts on future challenges
in the field (Sections 10 and 11).

2. Classical Theory

Symmetry is a general concept in mathematics [Wey52];
broadly speaking, a symmetry or invariance preserves a cer-
tain property (e.g., geometric similarity) of an object un-
der some operation applied to the object. This notion of in-
variance is formalized in an elegant branch of mathematics
called group theory [Rot94]. In the context of geometry, we
will consider geometric transformations as the symmetry op-
erations, such as reflections, translations, rotations, or com-
binations thereof.

We say that a geometric object M is symmetric with re-
spect to a transformation T, if M = T(M), i.e., M is in-
variant under the action of transformation 7. The set S of
all symmetry transformations of a shape has a very specific
structure, namely that of a group. A symmetry group is a set
of transformations that satisfies the following group axioms
with composition as the group operation:

e Closure: If M is symmetric with respect to two transfor-
mations 77 and T3, then it will also be symmetric with
respect to the composition 71 75. Thus if 71, 7> € S, it fol-
lows that (T1T>) € S also.

o Identity element: The identity transform / € S is always
a symmetry transformation, since it trivially leaves any
object unchanged, i.e., (M) = M.

e Inverse element: For each symmetry transformation 7 €

S there exists an inverse element T ! € S, such that
T-'T=17"'=1

e Associativity: The compositions of multiple transforma-
tions is independent of the priority of composition, i.e.,
(M) =T (T2T3) VT1, T, T3 € S.

Note that while the priority of composition is irrelevant,
the order of transformations can be important. For exam-
ple, composing two rotations in 3D about different axes in
general leads to a different transformation when switching
the order of application. Groups for which the relation 777
=TT holds VT, T, € S are called commutative or Abelian
groups, e.g., any two rotations about the same (rotation) axis.

The notion of symmetry as invariance under transfor-
mations is a powerful concept that has been long advo-
cated prominently by Felix Klein in his Erlanger Pro-
gramm [Kle93]. Klein proposed to characterize different
classes of geometry, such as projective geometry or Eu-
clidean geometry, based on the underlying symmetry groups.
For example, distances and angles are invariants in Eu-
clidean geometry. These properties are preserved under
transformations of the Euclidean group, the group of all
isometries with respect to the Euclidean metric. This notion
of classifying geometries based on symmetry groups can be
transferred to geometric objects as well.

Let us consider the example of a 2D equilateral triangle
shown in Figure 2(a). We observe that a rotation of 120°
around the triangle center maps the triangle onto itself. It fol-
lows that all integer multiples of this rotation are also sym-
metries of the triangle. However, only three of these rotations
are unique, since a rotation by 360° is equal to the identity
transformation. We also see that the triangle has three reflec-
tional symmetries across the lines from each vertex through
the triangle center. Together, these transformations form the
dihedral group D3 consisting of six elements, three rotations
(of which one is the identity transformation) and three reflec-
tions. In general, the dihedral group D, represents the sym-
metries of a regular n-gon. These symmetries can be rep-
resented as finite combinations of two generating transfor-
mations. For example, repeated application of a 72° rotation
and a reflection can generate all elements of a dihedral group
D5 (see Figure 2(b)). Shapes that have rotational symmetries
but no reflectional symmetries, such as the triskelion shown
in Figure 2(c) can be characterized by a cyclic group C, that
is generated by a rotation of 360°/n. The cyclic and dihe-
dral groups are finite point groups. In two dimensions, they
are subgroups of the orthogonal group O(2), the group of all
Euclidean isometries that leave the origin fixed. This infinite
group is the symmetry group of the circle, which is sym-
metric with respect to rotations of arbitrary angle around its
center and reflections across arbitrary lines through the cen-
ter (Figure 2(d)).

Symmetry groups have been used extensively in the study
of decorative art and structural ornaments. The symmetries
of a two-dimensional surface that is repetitive in one direc-
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Figure 2: The dihedral group D3 represents the symmetries
of the equilateral triangle (the colored flags are added to il-
lustrate the transformation), while Ds is the symmetry group
of the five-sided star. The triskelion has three rotational sym-
metry but no reflectional symmetries and is represented by
the cyclic group Cs. All of these finite point groups are sub-
sets of the isometry group O(2) that represents the symme-
tries of the circle.
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Figure 3: Frieze groups are composed of translation, rota-
tion by 180 degrees, glide reflection, reflection about a hori-
zontal line, or reflection about a vertical line.
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Figure 4: The symmetries of the tiling patterns of the Al-
hambra can be described by wallpaper groups of which 17
distinct types exist.

tion and extends to infinity along that direction can be clas-
sified by one of exactly seven Frieze groups (see Figure 3).
If repetition occurs in two different directions, seventeen
distinct groups are possible, denoted as wallpaper groups.
These groups combine reflections, rotations, and translations
so that all these transformations and all combinations of
them leave the entire grid unchanged. This leads to a wealth
of repetitive patterns that can, for example, be observed in
the beautiful tiling patterns of the Alhambra in Granada,
Spain (see Figure 4).

In summary, the classical theory of symmetry groups de-
scribes the structure of transformations that map objects to
themselves exactly. Such exact, global symmetry leads to a
group structure because after applying a transformation, we
end up with the same situation as before, creating a closed
algebraic structure.

In computer graphics applications, however, we often
face a more general problem, where symmetry is approxi-
mate and partial. For example, for a simple building facade
with windows related by translational symmetry, the closure
property is violated since the facades have finite extent. Fur-
ther, we have to handle different classes of transformations.
Finally, we need efficient algorithms to compute such sym-
metries. In the following subsection, we discuss these issues.

3. Classification

This survey investigates algorithmic paradigms for extract-
ing symmetries and higher-order relations in 3D geometric
data. We first formalize the problem of symmetry detection
and present several classification categories to highlight the
key similarities and differences of existing symmetry detec-
tion algorithms. In contrast to the classical theory discussed
above, we now consider practically important aspects such
as approximate symmetry and partiality.
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Input Output
T —
Reference Method £ 2 ¢ E = & 5 8 5 £ structure class of Type of
transform. Features
Altetal. 1988 [AMWWSS] object-space graph isomorph. v v ' v pairwise rigid
Atallah et al. 1985 [Ata85] string pattern matching v v v v pairwise reflections
Bermanis et al. 2010 [BAK10] spectral analysis v v v v pairwise rotations, angular difference
reflections functions
Berner et al. 2008 [BBW *08] feature-graph matching v v ' v v v segmentation rigid slippage features
Berner et al. 2009 [BBW *09a] feature-graph matching v v v ' v v segmentation (relaxed) Gaussian
isometries curvature,
curvature lines
Bokeloh et al. 2009 [BBW *09b] feature graph matching v v v v v segmentation rigid lines
Ben-Chen et al. 2010 [BCBSG10] flow of killing vector fields v v v v continuous  continuous Killing vector
isometries fields
Bokeloh et al. 2011 [BWKS11] RANSAC-based transformation v v v v v symmetry  translations sharp creases
verification groups,
continuous
Berner et al. 2011 [BWM* 11] feature-graph matching v v v v v segmentation  subspace lines of large
symmetries  principle curvature
Chertok et al. 2010 [CK10] spectral analysis v ' v ' ' pairwise rotations, local image
reflections features
Gal et al. 2006 [GCO06] geometric hashing v v v v segmentation  similarity curvature based
transform. salient features
Gelfand et al. 2004 [GG04] slippage analysis v v v v v continuous rigid local slippage
signatures
Kazhdan et al. 2003 [KCD* 03] descriptor computation with v ' ' v pairwise reflections
Fourier methods
Kazhdan et al. 2004 [KFR04] descriptor computation with v v v v pairwise rotations,
Fourier methods reflections
Kim et al. 2010 [KLCF11] search in mobius v v v v pairwise isometries average geodesic
transformations distance
Lipman et al. 2010 [LCDF10] spectral analysis in v v v v v v symmetry rigid
correspondence space aware
embedding
Lasowski et al. 2009 [LTSW09] belief propagation v v v v v segmentation isometries
Mitra et al. 2010 [MBB10] multi-dimensional scaling v v v v symmetry isometries discrete
groups Laplacians
Mitra et al. 2006 [MGP06] transformation voting v v v v v segmentation, similarity curvature
hierarchy transform.
Martinet et al. 2006 [MSHS06] generalized moment functions v v v v v pairwise, rotations, moments
hierarchy reflections
Ovsjanikov et al. 2008 [OSG08] search in signature embedding v v v v pairwise isometries global point
signatures
Pauly et al. 2008 [PMW ™ 08] transformation voting v v v v v symmetry similarity curvature
groups transform.
Podolak et al. 2006 [PSG*06] symmetry transform v v v v v pairwise reflections
computation
Raviv et al. 2007 [RBBKO07] generalized multi-dimensional v v v v pairwise isometries geodesic distances
scaling
Raviv et al. 2009 [RBBK09] generalized multi-dimensional v v v v v pairwise isometries geodesic distances
scaling
Raviv et al. 2010 [RBS™ 10] matching of distance v v v v pairwise isometries diffusion distances
histograms
Simari et al. 2006 [SKS06] reweighted least squares auto v v v v hierarchy reflections PCA axes
alignment
Sun et al. 1997 [SS97] search in orientation histograms v v v v v v pairwise reflections,  extended Gaussian
rotations image
Thrun et al. 2005 [TWO05] symmetry space scoring v v v v segmentation reflections,
rotations
Xu et al. 2009 [XZT*09] voting for symmetry transforms v v v v segmentation reflections SDF
Zabrodsky et al. 1995 [ZPA95] symmetry distance computation v v v v v pairwise isometries

Table 1: The table classifies the related work on symmetry detection according to the method used, type of input (meshes, point
sets, volume data, and images), and type of output (global vs. partial, discrete vs. continuous, extrinsic vs. intrinsic, structure
of the symmetries, class of transformations, and features used.)
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Correspondences as Building Blocks. The elementary
building block for symmetry detection is the identification of
matching geometry: Given a shape, the goal is to identify and
extract pairs of regions such that each pair of regions, under
an appropriate distance measure, is similar when the respec-
tive regions are aligned using an allowable transformation.
Specifically, given a geometric model M, the goal is to iden-
tify subsets My,M» C M such that M| ~ T (M,), where T
denotes an allowable transformation and ~ denotes equality
under the chosen distance measure. In case of partial sym-
metry detection, the surface patches are often required to be
non-overlapping, i.e., M| N M, = (. In this survey, we focus
on shapes represented as surfaces, e.g., point cloud data, tri-
angle meshes, or NURBS surfaces, rather than 2D images or
volumetric data.

Research efforts target variations of the symmetry detec-
tion problem primarily based on the choice of (i) how the
shape is segmented, (ii) how distance between two surface
patches is measured, and (iii) what classes of transforma-
tions are allowed to bring surface patches into alignment (see
Table 1 for a classification of recent related work). The sym-
metry detection problem is challenging because we have to
simultaneously segment the shape and establish correspon-
dence across the resultant segments, while solving for the
respective aligning transforms. Note that even the decou-
pled versions of the problem are non-trivial with various
solution strategies: we refer the readers to respective sur-
veys on mesh segmentation [Sha0O8] and surface correspon-
dence [VKZHCOI11]. Next we discuss some common vari-
ants of the problem.

Global vs. Partial Symmetries. For global symmetry de-
tection we seek transformations that map the whole object
to itself, i.e., M,M, = M. Consequently, we do not have to
solve the segmentation problem, which greatly simplifies the
symmetry detection process.

For global symmetries of a finite object the centroid of an
object is a fixed-point, i.e., the point is invariant under the
shape’s symmetry transformations. For example, symmetry
rotations have the object centroid as rotation centers, while
planes of reflection must pass through the object centroid.
Methods for global symmetry detection exploit this property
to significantly reduce the search space.

While a number of common shapes exhibit global sym-
metries (see Figure 1), self-similarities often occur only on
parts of a shape. In order to capture these regularity pat-
terns and enable a fine-grain analysis of geometric objects,
we consider partial symmetries. There are two aspects to
partial symmetries. Symmetry can be restricted to a subset
M’ C M as shown in Figure 5(a). If we consider M as a
separate shape, then we can apply the notion of symmetry
groups as defined above. Symmetry detection thus amounts
to segmenting the shape into subsets that exhibit global sym-
metries represented by a transformation group.
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Figure 5: Partial symmetries commonly occur in geometric
data sets.

In many instances, however, we do not have a complete
symmetry as defined by a symmetry group. For example,
translational structures in bounded shapes are very common,
such as the repetitive patterns of the steps of the stairs shown
in Figure 5(b). For such a structure, we can find a transfor-
mation that maps, e.g., the three lower-most steps to the three
upper-most ones, but there is no self-similarity of the entire
set of steps, except for the identity transform. Specifically,
we say a shape M has a partial symmetry with respect to
a transformation T, if there exist two subsets M{,M, C M
such that T(M;) = M,. This definition coincides with the
definition of a global symmetry if M;,M; = M, thus global
symmetry is a special case of partial symmetry.

Partial symmetry allows handling a broader class of sym-
metries, but typically does not preserve the group structure.
However, we can classify partial symmetries by the small-
est group that contains the partial symmetry transformations.
Conceptually, we can compute the closure of the symme-
try set with respect to composition, which is analogous to
repeating the pattern to infinity (or until a full rotation is
achieved for a cyclic rotation group) as illustrated in Fig-
ure 5.

Exact vs. Approximate Symmetries. In another axis of
variation, we look at the notion of equivalence ~ under
transformations. Physical objects as shown in Figure 1 are
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typically not symmetric in a precise sense; according to the
definition given in Section 2, none of these objects is sym-
metric. Deviations in biological growth, manufacturing im-
precisions, or stochastic fluctuations in physical processes
commonly invalidate a precise symmetry transformation.
These shapes, however, exhibit strong regularity patterns
that are close to ideal symmetries.

In order to enable more practical symmetry detection al-
gorithms, we need a mathematical definition of approximate
symmetry that is suitable for computation. For this purpose
we define a distance function d(M, T (M)) that measures the
distance between the two shapes M and T (M). We say that
a shape M is e-symmetric with respect to a transformation
T,if d(M,T(M)) < €. For € = 0 we obtain the definition of
exact symmetry, i.e., T (M) = M.

Different variants of distance functions have been pro-
posed. Zabrodsky et al. [ZPA95] introduced a measure of
approximate symmetry as the “minimum effort required to
transform a given object into a symmetric one”. This effort
of transformation is quantified through a distance function
that computes the mean of squared distances of each point
on a shape to the location on the closest symmetric shape. If
a shape is defined through a scalar-valued function f, e.g.,
a gray-scale image, then the closest symmetric function is
simply the average of f and T (f) [PSG*06]. Thus the sym-
metry distance can be defined as

i 232 |5

A distance measure that is often used in shape matching
and registration is defined as,

M. Tn) = [Tk =Tw(x)lPax, (1)
xXeM
where I'y/(y) is the closest point from y on the surface M.

Note that this is not a symmetric definition. Another popular
definition is the Hausdorff distance

dM,T(M))=max{sup inf |x—yl|, sup inf |x—yl}.
(M) yET (M) XEM

xeMYET (M

For a given transformation T and subset M’ C M we can
compute the symmetry distance using suitable discretiza-
tions of the continuous measures defined above. For exam-
ple, the integral distance measure of Equation 1 can be ap-
proximated as

AM 2
a.70) ~ 250 3 =TT
p:EP
where, A(M) is the surface area of M and P is a uniform
sampling of M with |P| samples.

4 \
) /f”
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Figure 6: A rigid correspondence is determined by a surface
point and a direction. In practice, we expect that an object
encoded by n points has no more than O(nl'5 ) candidate
transformations that a brute-force search algorithm would
need to test.

Another difficulty with approximate symmetries is that
the group structure is not preserved — it is well pos-
sible that d(M,T;(M)) < € and d(M,T,(M)) < €, while
d(M,(T\T»)(M)) > €. Hence e-symmetries are not closed
under composition and thus do not form a group. Alternately,
A ~ B and B ~ C do not necessarily imply that A =~ C.

For a partial and approximate symmetry to be meaning-
ful, the size of the symmetric subset needs to be sufficiently
large, and the approximation threshold € sufficiently small.
We say a tuple (M, T) with M’ C M is a (g, 8)-symmetry, if
dM', T(M")) < € and § = |[M’'|/|M|, where |- | denotes an
area measure. In general, we want to find symmetry trans-
formations that minimize € and maximize 8. A higher ap-
proximation threshold € typically allows larger symmetric
patches and vice versa. The appropriate tradeoff depends on
the specific application.

Intrinsic vs. Extrinsic Symmetry. Another mode of dis-
tinction between symmetry detection paradigms is how dis-
tance is measured. In most cases, we consider Euclidean dis-
tance between points. In few cases, however, an intrinsic
distance measure is more appropriate: for example, human
bodies undergoing isometric deformations. We return to this
topic later in Section 7.

4. Complexity

In this section, we consider a simple “brute-force” baseline
algorithm in order to understand the complexity of the sym-
metry detection problem and to motivate the need for more
sophisticated algorithms discussed in the subsequent sec-
tions.

The simplest option is to uniformly sample the space of
all allowed transformations, and then for each such trans-
formation 7 check whether d(M,T(M)) < €. Since such
a distance function typically has many local minima, a lo-
cal gradient descent optimization from a sparse sampling of
the transformation space is unreliable. On the other hand,
since the space of transformations is high-dimensional (e.g.,
6-dimensional for rigid transforms), naively sampling the
space can be highly inefficient. Instead, any practical algo-
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rithm first analyzes the input to identify good regions of the
transformation space to investigate.

To analyze the complexity of the symmetry detection
problem, let us assume we have a uniformly sampled point
set P consisting of n points that represent a shape M. Sup-
pose we want to detect if M is globally symmetric un-
der rigid transformations. Since a rigid transformation is
uniquely determined by three pairs of (non-degenerate) cor-
responding points, a brute force approach can be as follows:
We randomly select a triplet of points from P and try out
all possible (’3’) correspondences from points in P. For each
correspondence assignment, we verify if M is globally sym-
metric under the action of the corresponding transforma-
tion 7, i.e., we evaluate if d(M,T(M)) < €. The verifica-
tion test requires O(n) distance computations, with each dis-
tance computation taking O(1) (for example using an €-grid
as approximate search data structure, and excluding degen-
erate cases). Thus, our brute force approach detects global
symmetry in 0(n4). This estimate is an upper bound and is
rather conservative: If reliable surface normal information is
available, two corresponding point pairs are sufficient to fix
a rigid mapping that matches the local surface orientation.
This reduces the cost to O(n?) trials with O(n) cost each for
verification, i.e., leads to a total complexity of O(n*).

In practice, further optimizations are possible for non-
degenerate geometry: Rigid transformations preserve Eu-
clidean distances, which excludes all matches of point pairs
where the pairwise distance changes. Thus we only need
to fix one point and a tangential direction. Fixing a pair of
source points and one target point, the second target point
should be chosen from a sphere intersecting the geometry, a
set that typically resembles a distorted circle with typically
O(nO‘5 ) points. In other words, we would expect not more
than O(nO'S) relevant orientations, reducing the complexity
of finding transformation candidates to O(n'*) trials (Fig-
ure 6 illustrates the idea). The O(n) cost for verification can
be addressed by random sampling: If the current proposal
for a transformation 7 is wrong, it is likely that a random
point x € P will not be mapped close to P. We can expect
that the likelihood of not detecting a mistake will drop expo-
nentially with the number of trials, rejecting wrong matches
in expected O(1) time (we still need O(n) time for correct
and nearly-correct solutions). Thus, in a practical scenario,
with non-degenerate geometry, this would lead to an algo-
rithm with expected costs of O(n'?) for finding a global
rigid symmetry.

In the case of partial symmetry the complexity is higher.
First, we need to try all points of the object as source points
for finding a matching transformation, increasing the (ex-
pected) number of transformations to O(n??). Furthermore,
we cannot any longer rely on the randomized verification,
as this will miss partial symmetries more easily. The overall
complexity estimate therefore amounts to 0(n3'5) point-to-
point comparisons.
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Classes of allowable transformations with additional de-
grees of freedom further increases the complexity: Similar-
ity mappings (rigid motion + scaling) requires triplets rather
than pairs to be matched. Affine mappings (a general linear
transformation) requires a match of four point pairs, increas-
ing the costs accordingly (global symmetries require testing
of 0(n4) candidate transformations, partial symmetries re-
quire O(n°) candidates).

The goal of the algorithms presented in the following is to
find pairwise correspondences more efficiently. The key will
be to find the relevant transformations more quickly rather
than by applying a brute-force search.

5. Global Symmetry Detection

The main focus of this survey is on partial symmetry detec-
tion methods (see Section 6). For completeness, we briefly
mention a few global symmetry detection algorithms that
have been proposed for point clouds, triangle meshes, or
volumetric grids. Global Euclidean symmetries for finite ob-
jects can only occur as reflections or rotations. Models ex-
hibiting such symmetries share an important property: the
planes of reflection and/or the axes of rotation pass through
their center of mass. This property greatly reduces the search
space for symmetry extraction.

Theoretical characterization of symmetry detection algo-
rithms has been a topic of interest in computational geome-
try. Atallah et al. [Ata85] propose an O(nlogn) optimal al-
gorithm for enumerating all reflective symmetries of a pla-
nar figure consisting of segments, circles, and points. Alt et
al. [AMWWS&8] present efficient algorithms to handle rigid
transformations and also general congruences for point sets.

The computation of global symmetries can be further
simplified if reliable global shape descriptors can be com-
puted. Popular methods detect n-fold rotational symme-
try based on the correlation of the extended Gaussian im-
age [SS97], Fourier analysis to handle voxel data [KCD*03],
spherical harmonic coefficients [KFR04], or moment coeffi-
cients [TMS09].

Martinet et al. [MSHS06] propose an efficient method for
global symmetry detection using generalized even moments.
Given a surface mesh M, the generalized moment of order 2p
in a direction v is given by,

M (v) :/ % v|[Pdx.
xeM

For a shape that is symmetric about an axis v, they show that
YM?P(v) =0, i.e., the parameters of the global symmetry
transformations can be extracted as the directions that lead to
zero gradient of the moment functions. Since this condition
on the gradient can produce false positives, they verify the
candidate solutions in the last step of the algorithm.

Raviv et al. [RBBKO7] employ generalized multi-
dimensional scaling to detect global intrinsic symmetries.
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They find an embedding that preserves the geodesic dis-
tances on the object as corresponding Euclidean distances,
thereby reducing the isometric symmetry detection prob-
lem into an instance of Euclidean symmetry detection.
An alternative strategy has been proposed by Ovsjanikov
et al. [OSGOS8], who use eigenfunctions of Laplace Bel-
trami operators to transform intrinsic symmetries of a shape
into Euclidean symmetries in a signature space. As feature
points they use a restricted version of a Global Point Sig-
nature (GPS) embedding of manifold introduced by Rusta-
mov [RusO7b].

6. Partial Symmetry Detection

As discussed in Section 3, global symmetry detection is a
special case of partial symmetry detection. We now dis-
cuss five main approaches for partial symmetry detec-
tion: The geometric hashing algorithm of Gal and Cohen-
Or [GCOO06], the transformation space voting schemes of
Mitra et al. [MGP06] and Pauly et al. [PMW *08], the planar
reflective symmetry transform of Podolak et al. [PSG*06],
the graph-based approach of Bokeloh et al. [BBW*09b], and
symmetry-factored encoding by Lipman et al. [LCDF10]. At
a high level, these methods share many similarities, even
though the individual algorithmic components are differ-
ent. We identify three main stages that appear more or less
prominently in all these methods:

1. feature selection restricts the computations to a small set
of relevant geometric features,

2. aggregation accumulates local symmetry information in
a suitable data structure, and

3. extraction retrieves meaningful partial symmetries from
the aggregate symmetry representation.

Feature selection typically uses local shape descriptors to
significantly reduce the search space by considering geo-
metric properties of the shape that are invariant under the
considered symmetry transformations. For example, rigid
transforms preserve principal curvatures [Car76]. As a con-
sequence, if two points have significantly different curva-
tures, then no rigid transformation can sufficiently align the
local surfaces around the points, and hence the points can-
not be symmetric counterparts. In general, feature descrip-
tors should satisfy the following requirements: The features
should be (i) distinctive and characteristic of local geome-
try, (ii) invariant under the considered symmetry transfor-
mations, (iii) efficiently computable, and (iv) robust under
missing data, noise, and outliers.

For symmetry under rigid transformations, a natural
choice for a feature descriptor are differential proper-
ties of the surface that are commonly averaged over
the local feature area. Curvatures can be reliably es-
timated from mesh representations using various ap-
proaches including curvature tensors [Tau95], osculating
jets [CPO3], finite-differences [Rus04], polynomial approx-
imations [MGPGO04], integral invariants [PWY *07], or heat

Figure 7: The suction cup on the tentacle of the octopus is
identified as a salient feature and its similar occurences are
detected [GCOO06]. (Images courtesy of Gal et al.)

kernels [SOGO09]. Under intrinsically isometric transforma-
tions, Gaussian curvatures are preserved at the surface point
and hence are commonly used as local features. Heat ker-
nels, which are also functions of Gaussian curvature for
small neighborhoods, are also employed as they can be ro-
bustly computed.

However, even with feature-based pruning, an exhaustive
validation of all remaining symmetry candidate transforma-
tions is computationally too expensive. A successful strategy
is to further reduce the search space by aggregating local in-
formation of symmetries in a suitable representation of the
symmetry transformation space. Given the aggregated local
symmetry information, different strategies can be employed
to extract the most likely candidates for meaningful partial
symmetries. The extracted symmetry candidates are finally
verified and refined in the spatial domain commonly leading
to a segmentation of the model.

6.1. Geometric Hashing

A fundamental technique often employed for indexing is
geometric hashing. Gal and Cohen-Or [GCO06] propose
a solution for self-similarity or symmetry detection based
on this approach. Originally introduced by Schwartz and
Sharir [SS87], geometric hashing was later popularized by
Wolfson [WR97] in the context of object retrieval. The al-
gorithm proceeds in two main stages: In a preprocessing
phase, a large hash table is constructed consisting of a col-
lection of features. In the query phase, the hash table is then
used to efficiently prune out unnecessary retrievals for test-
ing matches.

Feature selection. Gal and Cohen-Or use a local feature
descriptor based on surface curvature. First, they use least
squares to locally fit quadratic patches to vertex neighbor-
hoods of a given mesh. The curvature tensor and curva-
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ture derivatives at vertices are then computed using the co-
efficients of the fitted quadratic patches and the mesh ver-
tices are sorted according to the magnitude of the Gaus-
sian curvature, i.e., the product of principal curvature val-
ues. Subsequently, they build local patches around the ver-
tices by greedily adding neighboring faces to the current
patch as long as the patch can be quadratically approxi-
mated, within a user-defined threshold. Finally, they mark
patches as salient based on a score computed using an empir-
ical combination of curvature values associated with a patch,
the number of curvature extrema in the patch, the curvature
variance in the patch cluster, and the patch area. This rather
sophisticated method of feature selection is necessary for
sufficient pruning in order to reduce the memory overhead
for storing the index tables.

Aggregation. They aggregate transformations based on the
following observation: several transformation families have
only a few degrees of freedom and are uniquely determined
by a small number of correct corresponding point pairs.
For example, rigid transformations are uniquely specified by
only three corresponding point pairs [GG04]. So for rigid
transformations, they pick all sets of triplets of points as
bases, and use each base to bring the point set to a canoni-
cal position. For each choice of base, the remaining points in
their canonical positions define a hash function, where each
point is indexed based on their spatial location. When a base
is so chosen that the corresponding point sets indeed match,
a large number of point pairs will be in agreement. Based on
this observation, they then handle query objects by probing
against this hash table. Essentially, this can also be seen as
an example of voting, but the cost of creating the data struc-
ture is very high since the entire space of possible matching
space is voxelised for hashing.

Extraction. In the geometric hashing step, they first bring
each query patch to a canonical position by indexing a small
number of rotation-invariant features. The remaining points
in the aligned pointset are tested against the geometric hash-
ing grid to check if there is any consensus for a matching
base index. The method determines the best aligning trans-
formation from a large set of transformations using a vot-
ing scheme, quantizing the transformation space using a six-
dimensional table.

Suppose using the current base, the aligned point set po-
sitions are given by {p;}. They first retrieve the cells {c¢;}
where the aligned points lie, and for each cell ¢; find the base
indices B; = {sz} that vote for the current cell. A consensus
is reached when there is a significant number of cells vot-
ing for any particular base(s). A consensus, if found, yields
a potential aligning transformation using the transformation
between the starting base and the matched base index. This
process is repeated over all possible choices of bases to list
the candidate transformations. In practice, instead of iterat-
ing over all possible bases it is sufficient to try a random se-
lection of bases [WR97, GCO06, AMCOOS]. Figure 7 shows
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Figure 8: Symmetry detection results under similarity trans-
formations (rotation, translation, reflection, and scaling)
on 3D geometry using a transformation domain voting
scheme [MGPO6].

an example of searching for similar occurences of a query
patch in an input model using this approach.

6.2. Transformation Space Voting

Mitra et al. [MGPO06] propose a method for computing
pairwise partial and approximate symmetries based on ac-
cumulating local symmetry votes in a symmetry trans-
formation space. The method was extended by Pauly et
al. [PMW™*08] to handle repetitive patterns based on one-
and two-parameter transformation groups.

Feature selection. An important aspect of the voting
scheme is to aggregate local geometric information to cap-
ture even small-scale symmetries. They employ simple fea-
ture descriptors based on differential geometry invariants:
Principal curvatures k| and K for rigid transformations, and
the ratio of principal curvatures x; /%, for similarity trans-
formations.

Aggregation. They map point-pairs with matching signa-
tures of the original object to points in a transformation do-
main. When considering mirror symmetries, the algorithm
exploits the fact that any two points p and q define a unique
plane of reflection. This plane is the orthogonal bisector of
the two points, i.e., passes through the point (p + q)/2 and
has normal vector (p —q)/||p — q||- Notice that the orienta-
tion of the normal vector has a flip ambiguity. The reflective
plane can be represented as a point in a 3D space consisting
of two angles that define the normal vector and the distance
of the plane from the origin. Thus a pair of spatial points gets
mapped to a point in the 3D space of reflective planes, called
transformation space (see Figure 9). This idea does not im-
mediately generalize to handle rigid transformations as a
point pair alone is not sufficient to uniquely determine an
aligning transformation. Instead, in order to extract a unique
aligning transformation, they encode the local neighborhood
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local evidence for
symmetry plane

X d

Figure 9: To detect symmetries in geometric models, the
boundary of the shape is uniformly sampled (left) [MGPOG].
Every pair of samples with compatible local surface ge-
ometry provides local evidence for a symmetry transforma-
tion (center). In this example we consider reflections that
are parameterized by an angle ¢ and the distance d to the
origin. Accumulating such evidence using a clustering ap-
proach yields the dominant symmetries of the model (right).

at each point, using the intrinsic local frame composed of the
surface normal and the principal curvature directions. Since
umbilical points, i.e., points with locally spherical neighbor-
hoods, do not have uniquely defined principal curvature di-
rections, they are left out of the point-pairing. In the case of
rigid transformations each point-pair along with the respec-
tive intrinsic coordinate frame produces a rigid transforma-
tion parameterized by a translation vector and three Euler
angles, i.e., a point in a 6D transformation space.

Extraction. Each point in transformation space can be in-
terpreted as a witness or vote for a symmetry transformation.
To extract meaningful symmetries at larger scales such local
evidence is accumulated, i.e., groups of pairs with a similar
transformation are found that correspond to symmetric sub-
sets of the model surface. Suppose the transformation space
is equipped with a distance metric, i.e., for any two trans-
formation points 7; and 7}, their distance d(7;, T;) is defined
(typically using Euclidean distance). Under such a distance
measure, dense regions in the transformation space can be
identified using a clustering approach. For this purpose, Mi-
tra et al. [MGPO6] use a mean-shift clustering method, which
does not require a priori knowledge of the number of poten-
tial clusters or equivalently number of potential symmetry
transformations. The kernel width of the mean-shift cluster-
ing method is a user parameter that controls the approxima-
tion level of the detected symmetries. For a fixed approxi-
mation level, the strength or height of clusters relates to the
number of votes the region receives in the transformation
space. Each cluster corresponds to a potential pairwise par-
tial symmetry of the shape and the extracted cluster centers
act as symmetry transformation candidates that are subse-
quently validated and refined. Figure 8 shows example sym-
metries detected by this method under similarity transforma-
tions.

Transformation domain voting can be extended to detect
one- and two-parameter patterns as demonstrated by Pauly
et al. [PMW*08]. The algorithm is based on the observa-
tion that regularity in spatial domain reveals itself as a lat-

Figure 10: Regular structures discovered using transforma-
tion domain grid-detection [PMW*08] on an amphitheater,
a nautilus shell, a laser-scan of a building, and a procedu-
rally generated helical segment.

tice structure in the transformation domain. Such lattices can
be effectively extracted by analyzing appropriate 2D planar
slices passing through the origin of the 6D transformation
space. A robust grid fitting algorithm is then applied on the
2D slices to estimate the generating transformations of the
symmetry lattice. Figure 10 shows typical results obtained
using this approach.

6.3. Planar Reflective Symmetry Transform

Motivated by the notion of continuous symmetry introduced
by Zabrodsky et al. [ZPA95], Podolak et al. [PSG*06] inves-
tigate the notion of a symmetry transform under reflective
transformations. They propose the planar reflective symme-
try transform (PRST) to encode a continuous notion of sym-
metry of an object about any reflective line in 2D, or about
any reflective plane in 3D. Given a reflective plane v, the
PRST for a function f is defined as:

PRST?(f,7) := 1 —d(f,¥(N))*/ I f]I*.

The symmetry distance d(f,Y(f)), as originally introduced
by Zabrodsky, is defined as the distance of the function f
to the closest function g that is symmetric with respect to
the transformation defined by v, i.e., d(f,y(f)) := ming || f —
g, such that y(g) = g. Computationally, the closest func-
tion is simply the average of f and its reflection y(f), and
hence the symmetry distance simply [KCD*03]:,

d(fv() = If = (F+v)/20 = 1f =v(Hll/2.

This greatly simplifies the computation of the PRST reduc-
ing it to evaluating dot products:

2
where the function f is assumed to be normalized, i.e.,
lf]l = 1. Since the above definition applies to a function

f, the algorithm transforms a given surface geometry into
a suitable functional representation. A typical solution is
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to embed the surface in a volume grid and rasterize the
surface using a Gaussian blur kernel to smooth out effects
of noise and small features. An alternative is to use the
Gaussian Euclidean Distance Transform (GEDT) as pro-
posed by Kazhdan and colleagues [KFRO04]. Podolok et
al. [PSG*06] observe that functions arising from rasterized
surfaces are typically sparse over the volume grids, and pro-
pose a Monte Carlo sampling algorithm to efficiently com-
pute the PRST. Figure 11 shows the PRST for several sim-
ple curves. The definition has subsequently been extended
by Rustamov [RusO7a] to incorporate local neighborhood
of points or contexts using a scale factor for controlling the
neighborhood range.

Feature selection. PRST being a symmetry transform as-
signs scores to all possible reflective planes, and hence does
not involve any feature selection to limit the possible choices
of potential candidate transformations.

Aggregation. In practice, the PRST is evaluated over a dis-
crete space using a volume grid discretization. Typically the
local maxima of the symmetry function are of interest, as
they reveal potential principal reflective symmetries, both
partial and approximate. The PRST values are computed
over a medium resolution volume grid, and then candidate
maxima are identified via a thresholding step. Instead of a
global threshold value, Podolak et al. suggest using a lower
threshold near the edges of the boundary than near its cen-
ter. They use a threshold proportional to (1 — r/R), where
R is the radius of the object, and r is the distance of the
candidate plane of reflection from the center of mass of the
object. Additionally, shallow maxima, typically caused by
noise, are suppressed using a discrete Laplacian smoothing
of the computed PRST. Potential symmetry candidates are
locally refined using the Iterated Closest Point (ICP) algo-
rithm [BM92,CM92, MGPGO04].

6.4. Graph-Based Symmetry Detection

Instead of operating at the level of sample points, it is some-
times more practical to work at the level of feature curves,
in particular for data sets where these feature curves can
be extracted robustly. This leads to substantial reduction in
computational overhead, since the number of feature curves
is typically significantly smaller than the number of sample
points.

Bokeloh et al. [BBW*09b] explore this idea by mapping
the symmetry extraction problem to a mapping problem of
a network of curves. They extract line features that form a
very sparse approximation of the original geometry, arguing
that for many objects the crease lines carry the most impor-
tant information. Feature lines are then used to define local
coordinates or bases. Matching subsets of such bases then
amounts to arrangements of line features with compatible
local neighborhoods. Such matching subsets are treated as
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Figure 11: Planar Reflective Symmetry Transforms (PRST)
forvarious curves. For visualization, each pixel is colored by
the score of the plane with maximum symmetry score among
all the planes passing passing through the pixel. (Images
courtesy of Podolak and et al. [PSG*06]).

potential symmetry candidates and are subsequently tested
and extracted in a validation stage. Although working with
a sparse set of linear features makes the approach substan-
tially more efficient than directly comparing local geometry,
the approach assumes input models with a dominating set of
such characteristic linear features. The graph of linear fea-
tures is built using detected feature lines as nodes and using
an edge set obtained by connecting k-nearest line segment
neighbors.

Feature selection. As a general criterion for a line feature,
the local geometry on the line should be invariant under
continuous motions along that line. The algorithm consid-
ers rigid motions as potential symmetry transformations and
detects lines by slippage analysis [GG04]. Effectively, the
method finds regions that map to themselves under infinites-
imal rotations and translations, yielding straight and circular
line directions. In order to place the actual features, points
of maximum principal curvature orthogonal to the line direc-
tion are chosen. The actual detection is formulated as a mov-
ing least-squares problem that sparsely samples the geome-
try and then iteratively moves points within line-regions to-
wards curvature extrema. The sparse sampling yields rather
moderate computation times. Other feature selection crite-
ria have been proposed in the context of similar symmetry
detection methods [BBW™*09a, GSMCO09, MZL*09].

Aggregation. The algorithm matches pairs of line features
that intersect in a locally similar way (similar curvatures,
similar angles). All such base-pairs yield potential transfor-
mations that could be checked: The combination of non-
parallel lines gives a fixed coordinate frame for the initial
transformation. The algorithm then proceeds by checking
the line-pattern in the neighborhood iteratively, thereby re-
fining the transformations by iterative alignment. For effi-
ciency reasons, not all pairs of bases are checked but instead
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Figure 12: Symmetry detection result using line features and
sub-graph matching [BBW*09b]. Detected symmetric or re-
peating parts are highlighted.

random sampling is applied. The underlying assumption is
that the most salient symmetries are more likely to receive a
random sample. By testing local line configurations in grow-
ing radii, false positives can be rejected rapidly.

Extraction. The previous step yields a list of potential
transformations that are true positives with high probabil-
ity as the main crease lines match in a local neighborhood.
Potential transformations are verified using a region growing
algorithm that compares actual points in terms of their dis-
tance to the matching surface and also fixes the final extent
of the symmetric regions. They simultaneous grow regions
that stop if symmetric areas collide, thereby partitioning the
model into symmetric pieces. Such a partitioning, however,
is non-canonical since it depends on arbitrary choices (such
as where the region growing is started). Later, Bokeloh et
al. [BWS10] introduce a similar algorithm that lifts this re-
striction but outputs overlapping symmetric areas.

6.5. Symmetry Factored Embedding

Instead of working in the transformation space, one can also
work directly in the space of correspondences. Specifically,
if a model is sampled with n points, then one can repre-
sent symmetry using a symmetry correspondence matrix C
of n X n non-negative entries, where each entry encodes sym-
metry relations between point pairs. Lipman et al. [LCDF10]
make an important observation that such a matrix is sparse
and all points symmetric to each other form an orbit, which
appears as a clique in the graph induced by the symme-
try correspondence matrix C. They extract connectedness
of the graph using spectral methods. Specifically, given a
model, first a correspondence matrix is selected using a ran-
domized algorithm similar in spirit to voting-based meth-
ods [MGPO06]. The symmetry factored embedding is then de-
fined using the spectral analysis of the correspondence ma-
trix C. If Cyy = Ay for k = 1,...,n with y;, and A are
respectively the eigenvectors and eigenvalues of C, the em-

Figure 13: Symmetry factored distance and the symmetry
orbits detected. (Left) Symmetry factored distance from the
marked point (with arrow) to all other points on the model,
with blue denoting small distance and red denoting large
distance. Note that symmetric points are at similar dis-
tances. (Right) Segmentation in the symmetry-factored em-
bedding space produces symmetry-aware segmentation. (Im-
ages courtesy of Lipman et al. [LCDF10].)

bedding is defined as:

q)t(xi) = (}Jl“}] (xi)7 ce »M‘I’n(xi))

where, ¢ is in the range of 20 — 80 (see also [NLCKOS5]).
Subsequently, symmetry factored distance between any two
points x; and x; on the mesh can be simply computed as the

Euclidean distance in this embedded space, i.e., d' (x;,x j)2 =

@ (xi) — @' (x))[1* = LM llwie(xi) — Wi (x)) 1> (see Fig-
ure 13).

6.6. Symmetry Verification

Local Refinement. Most symmetry detection algorithms
first detect symmetry transformations approximately, and
later refine the transformations for improved accuracy. Sup-
pose a mesh M is symmetric (partially) under transforma-
tion 7. This implies that M and T'(M) are closely aligned,
though only parts of the object may be matched in case of
partial symmetry. To further improve the matching, one can
treat M and T(M) as two independent shapes and improve
their alignment — this is the classic local registration prob-
lem. A popular solution to this problem is the Iterated Clos-
est Point (ICP) algorithm [BM92, CM92, MGPGO04]. Sup-
pose the local (rigid) registration brings M in alignment with
T (M) under transformation 7, i.e., T((M) = T(M) = M~
! T (M), assuming 7 is invertible. In case of symmetry de-
tection under rigid transformations, the refined rigid trans-
formation is given by 7T In case of reflective symmetry,
we can factor in T appropriately to solve for the refined trans-
formation plane. In case of line features the approach can be
extended to Iterated Closest Line algorithm [BBW*09b].

In the case of regularity detection, when instead of look-
ing for isolated symmetries one searches for a pattern among
the detected transformations, the refinement process is cou-
pled, i.e., such local refinements amount to a simultane-
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Figure 14: Under the action of transformation T;, the in-
put shape M gets mapped to T;(M). The overlap regions,
shown in black, between M and T;(M) are the parts that are
symmetric under the action of transformation T;. Overlap is
measured with respect to a tolerance € as specified by the
approximation level.

ous registration problem in the object domain. This is a
generalization of ICP based refinement, but additionally 1-
parameter or 2-parameter detected regularities are main-
tained [PMW*08].

Patch Extraction. After extracting potential symmetry
transformations and then refining the coarse estimates, the
last step of most symmetry detection algorithms involves ex-
tracting patches of the mesh that are symmetric under the
detected symmetry transformations. Recall that for given a
mesh M, the goal is to identify regions {R;} of the mesh that
are symmetric to other regions of the mesh under transfor-
mations {7;}. The challenge is to simultaneously determine
{R;} and {T;}. Once {T;} is known, however, the problem
becomes much simpler. Thus given a transformation 7;, the
problem amounts to finding the overlapping region R; be-
tween M and T;(M) (see Figure 14).

The notion of overlap is defined up to a margin of ap-
proximation €. Let V be the vertex set of mesh M. The set
of vertices {v;} € V can then be extracted such that for all
the chosen vertices d(v;, M) < € under an appropriate choice
of distance. Finally, the selected points {v;} can be grouped
together into connected components using the original con-
nectivity of the input mesh M. Most algorithms retain only
the largest connected component as the symmetric patch R;,
and analyze the remaining mesh for further symmetries.

7. Intrinsic Symmetries

Euclidean symmetries depend on the embedding of an ob-
ject in the ambient space. For example, while the geometry
of the dragon in Figure 15(a) does not exhibit any global
symmetries, the pose of Figure 15(b) exhibits a global mir-
ror symmetry. Thus, the symmetries of the object change
with changes of the embedding. In the spirit of the Erlan-
gen Program initiated by Felix Klein, it is possible to avoid
the dependence on the embedding by looking at a broader
class of transformations. Intrinsic symmetry can be defined
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by considering self-isometries of a surface with respect to an
intrinsic metric of the surface. For example, we can specify
as an intrinsic metric the geodesic distance function dj that
measures the distance between any two points X,y € M as
the length of the shortest path between x and y on M. We
say that a shape M is intrinsically symmetric with respect to
a homeomorphism 7' : M — M, if the intrinsic metric is pre-
served by the mapping, i.e., if dy(x,y) = du(T(x),T(y))
for all points X,y € M.

Extrinsic, i.e., Euclidean, symmetries as defined previ-
ously are a subset of intrinsic symmetries, since all Eu-
clidean transformations are isometries of the embedded sur-
face. Note that whether extrinsic or intrinsic symmetries are
more appropriate to characterize an object depends on the
type of object and the specific application.

For isometric transformations, a natural choice for local
descriptor is the Gaussian curvature. At any point on a sur-
face Gaussian curvature can be evaluated using only length
measurement on the surface, i.e., using the first fundamental
form of the local surface, and hence remains invariant un-
der isometric deformations [Car76]. A Gaussian curvature
based feature descriptor has been used for performing non-
rigid registration under isometric deformations by Huang et
al. [HAWGO8]. Xu et al. [XZT*09] use shape diameter func-
tions [SSCOO08] computed on equally spaced geodesic rings
around surface points as an alternative to conventional cur-
vature estimates.

In the context of point-to-point correspondence between
surface pairs with approximate and partial isometry, Lip-
man et al. [LF09] propose an automatic and efficient algo-
rithm (see Figure 16). They observe that isometry is a subset
of Mobius group, which has only 6 degrees of freedom for
genus zero surfaces and only 3 degrees of freedom for topo-
logical discs. Based on this observation, they efficiently ex-
tract candidate Mobius transforms, which are then verified to
extract the best isometric deformation, thus producing point-
to-point correspondence. Specifically, given two surfaces M
and M5, they first uniformly sample the surfaces to produce
point sets P; and P, respectively using same sample spac-
ing. In a key step, they observe that a pair of triplets of points

Figure 15: Changes of pose cause a change in extrinsic sym-
metries. While the pose in (a) does not exhibit a global mir-
ror symmetry, a (nearly) isometric deformation exposes the
global reflection (images from [MGPO7]).
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Figure 16: Isometric point-to-point correspondence be-
tween two meshes My and M,. The meshes are first confor-
mally flattened to the plane. Any pair of triplet of correspon-
dences, then uniquely specifies a Mobius transform between
the flattened meshes. Each such Mobius transform is ranked
based on the votes from other mesh vertices, and the high-
est rated transform is retained as the isometric deformation
linking My and M,. Intuitively, a correct pair of correspon-
dence triplets (like shown in red, green, blue) brings the flat-
tened meshes to alignment (bottom row). (Images courtesy
of Lipman and Funkhouser [LF09].)

from the two point sets is sufficient to uniquely determine
a Mobius transform linking M| — M;. Each such Mobius
transform can then be used to vote for correspondence be-
tween shapes M| and M;. The algorithm successfully finds
correspondence across model pairs even under isometric de-
formations resulting in large Euclidean deformations. Kim et
al. [KLCF11] extend this algorithm to detect global intrinsic
symmetry on 3D models (see Figure 17).

Earlier, Raviv et al. [RBBKO07] employ generalized multi-

Figure 17: Intrinsic symmetries detected on 3D geome-
try. (Images courtesy of Ovsjanikov et al. [OSGO08], Kim et
al. [KLCF11] and Lasowski et al. [LTSW09], respectively.)

dimensional scaling to compute a new embedding that best
preserves the original geodesic distances on the object in
the form of corresponding Euclidean distances in the new
space. This mapping reduces the isometric symmetry de-
tection problem to an instance of Euclidean symmetry de-
tection. In another attempt, Ovsjanikov et al. [OSGO08] use
eigenfunctions of Laplace Beltrami operators to transform
intrinsic symmetries of a shape to Euclidean symmetries in
the signature space. As feature points they use a restricted
version of Global Point Signature (GPS) embedding of a
manifold, originally introduced by Rustamov [Rus07b]. Lip-
man et al. [LCDF10] use the pointwise absolute values of
the Laplacian eigenvectors as a measure of the global intrin-
sic similarity in their spectral clustering framework to extract
global intrinsic symmetries. In a recent effort, Xu et al. [xu2]
introduce a two-level clustering framework to detect par-
tial intrinsic symmetries at multiple scales. They first per-
form a clustering to identify the different symmetry scales
and then extract symmetries at each scale by a second-level
spectral clustering. In another effort, Xu et al. [XZT*09] ex-
tend PRST based reflectional symmetry detection [PSG*06]
and introduce an algorithm to extract partial intrinsic re-
flectional symmetries in 3D geometry. Given a closed 2-
manifold mesh, they use a voting scheme to compute a scalar
field, whose local extrema are accentuated to reveal local re-
flectional symmetry support along curves. An iterative re-
finement procedure combined with region growing is used
to finalize the results and identify the isometrically repeat-
ing parts (see Figure 18). Alternately, Mitra et al. [MBB10]
extract intrinsic regularity, where the repetitions are on an
intrinsic grid, without any apparent Euclidean pattern to de-
scribe the shape, but rising out of (near) isometric deforma-
tion of the underlying surface. They employ multidimen-
sional scaling to reduce the problem of intrinsic structure
detection to a simpler problem of 2D grid detection, which
is performed using an autocorrelation analysis.

8. Encoding Extracted Symmetries

In addition to detecting symmetries, as discussed in the pre-
vious sections, it is also important to consider how the output
is encoded. Independent of the specific symmetry detection
algorithm, a number of different representations of the ex-
tracted symmetries are possible with the preferred represen-
tation depending on the target application.

Pairwise symmetries. The simplest form of output is a list
of pairwise symmetries, i.e., a list of the pairwise correspon-
dences: For each such entry, the detection algorithm reports
a transformation T and a subset of points (or surface patch)
M| C M such that dist(T(M;),M) is small and T has de-
sirable properties such as rigidity, isometry, similarity, etc.
In the case of approximate symmetries, every point X € M
might be additionally tagged with a confidence measure,
e.g., based on the distance to the surface.

Pairwise symmetries couple parts of surfaces in two
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Figure 18: Intrinsic symmetries detected on 3D geometry.
(Image courtesy of Raviv et al. [RBBKO7] and Xu and et
al. [XZT"09], respectively.)

ways: First, they define a pairwise similarity measure for
points on the surface. This can be used to non-locally trans-
port information, such as denoising or simultaneous edit-
ing. Second, the information that two regions M{,M, =
T(M;) are coupled by a symmetry transformation T can
be exploited to characterize shapes for recognition or for
structure-preserving editing.

Pairwise relations capture the symmetry structure of an
object only indirectly. While the set of pairwise relations
in principle encode all symmetries within an object, further
processing is necessary to extract relevant aspects.

Segmentation. One option for representing the symmetry
information is to segment the input shape M into symmetric
building blocks. A simple implementation is through region
growing (see [MGP06, BBW*(09b], Figure 12 shows a typi-
cal result): For each pairwise symmetry (M1, T), seed points
x,T(x) are created and a simultaneous region growing is
started, stopping when regions collide. The technique of Lip-
man et al. [LCDF10] processes the correspondence informa-
tion by clustering consistent orbits, computing a symmetry-
aware distance function as output. Points that form consis-
tent cliques of equivalent points (under the mappings con-
sidered) are embedded close to each other. In the (optional)
segmentation step, such points will obtain the same label.

Segmentation into symmetric parts has a number of limi-
tations: Hierarchy and regularity are not explicitly encoded,
and the decomposition does not necessarily lead to build-
ing blocks that can be reassembled to create new composite
shapes. Therefore a number of alternatives have been pro-
posed, as described next.
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Figure 19: Establishing a hierarchical structure is ambigu-
ous, there are usually several equivalent solutions that all
explain the structure compactly.

Hierarchy. The segmentation algorithm can be augmented
to provide a hierarchical encoding: Mitra et al. [MGP06] per-
form a hierarchical reduction where salient symmetric parts
(indicated by strong responses in transformation space) are
reduced to a single part, before recursively continuing the
symmetry search. In another effort, Simari et al. [SKS06]
present a folding tree data structure to encode non-redundant
regions of the original mesh as well as the reflection planes
by recursively applying a symmetry detection algorithm.
The encoded structure can then be unfolded to recover back
the original shape. Wang et al. [WXL*11] refine the idea by
using perceptual grouping for estimating the hierarchy. Such
hierarchical encodings facilitate compression and structure-
aware editing. In many cases, however, symmetries are not
fully captured by a hierarchical model. For example, for a
grid of 4 x 4 windows, many, equally well-justified hierar-
chical decompositions exist (for example, see Figure 19) . A
purely hierarchical encoding therefore has to make choices
during the construction of the hierarchy, making the repre-
sentation non-canonical. Finding an optimal hierarchy with
respect to compression (minimal coding costs) is NP-hard,
e.g., a two-level hierarchy reduces to the NP-hard set-cover
problem.

Building blocks. The issue of finding a segmentation that
leads to building blocks that can be connected to form new
shapes has been considered by Bokeloh et al. [BWS10]: In-
stead of cutting pieces at Voronoi cells of a region grow-
ing algorithm, their approach cuts at the boundaries of par-
tial symmetries. The set of such boundaries leads to dock-
ing sites that form adapters for connecting alternative pieces.
The proposed algorithm, however, still uses a non-canonical
hierarchical encoding of the docking for efficiency rea-
sons and only works for exact symmetries. Kalojanov et
al. [KBW™*12] study this idea more systematically: Similar
to Lipman et al. [LCDF10], they consider cliques of equiv-
alent points, induced by pairwise input matchings. They
group points with the same set of outgoing transformations
into an elementary building block, and consider all blocks
within the same clique of transformations as one class of
tiles. This yields “microtiles”, a canonical, non-hierarchical
decomposition of pairwise matches into building blocks
from which all partial symmetry information can be effi-
ciently retrieved.
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(a) input scene

(c) regular grid

(d) pairwise match

Figure 20: Partial symmetry decomposes an input scene (a)
into exchangeable pieces (b) [KBW* 12]. This yields regular-
ity (a group structure) with respect to exchanging of parts.
Regularity of transformations (c) is stricter and does not
capture all redundancy. Looking at a single pairwise match
(d), we see that it comprises pieces from multiple permuta-
tion groups. Due to the mixing of different types of regularity,
the set of pairwise matches in general does not form a group
and the matched regions might overlap partially.

Symmetry groups. The structure of global, exact symme-
tries is understood by the formalism of symmetry groups, as
discussed in Section 2. The idea is easily extended to finite
excerpts of such groups, for example, to detect the regularity
in a finite grid of windows of a building. The detection can
be restricted to certain types of symmetry groups: For ex-
ample, commutative symmetry groups (such as translational
patterns) are concisely described by a set of generator trans-
formations Ty, ..., Ty that replicate a base instance M} C M
by a set of transformations {T}' o... oTZ‘,il, ..yix € Z}. This
structure is isomorphic to an integer lattice (commutativity
is important since it allows us to freely reorder the trans-
formations). Such models are useful for shape analysis and
structure-aware shape editing (e.g., unlike complex symme-
try groups, grids can be easily augmented with additional
elements) [PMW*08, MP08, BWKS11].

For partial symmetry of shapes, usually no group struc-
ture exist in the set of transformations involved, as symmet-
ric pieces might be placed irregularly, and even regular ar-
rangements are most of the time only excerpts such that the
group is not closed. Kalojanov et al. [KBW™*12] show that
in their decomposition into “microtiles” gives rise to canon-
ical, maximal permutation groups of pieces. These building
blocks can be exchanged with a maximal number of dif-
ferent instances (see Figure 20a,b). In their view, regularity
of partial symmetry is captured best in the actions of the
transformation on appropriately chosen subsets, not (nec-
essarily) in the transformations themselves (see Figure 20
c¢). If we look at a specific pairwise match (under a single,

data completion

symmetric triangulation

Figure 21: Applications of symmetry in model acqui-
sition and representation (Images courtesy of Zhang et
al. [ZSW*10], Mitra et al. [MGPO6], Thrun et al. [TWO05],
and Podolak et al. [PGRO7] respectively.)

fixed transformation), it will usually contain a union of mul-
tiple pieces from different such regularity patterns (see Fig-
ure 20d). Thus, the group structure is lost and this causes the
confusions in how to interpret the resulting structure.

Continuous symmetry. For shapes that contain areas such
as flat planar surfaces or straight edges, infinitely many par-
tial symmetries exist, with a continuum of transformations.
Continuous symmetries with respect to rigid motion have
been studied by Gelfand et al. [GG04] who find slippable
motions using zero eigenvalues of the Hessian matrix of a
rigid auto-alignment problem (local patches of geometry are
matched to themselves). The output is a segmentation into
different types of slippable regions (with zero to three rota-
tional and/or translational degrees of freedom). An analogue
for intrinsic rather than extrinsic isometries (Killing vector
fields) has been studied by Ben-Chen et al. [BCBSG10].

In summary, while different models are possible to struc-
ture the space of pairwise symmetries, the choice often de-
pends on the target application. Importantly, while global
and exact symmetries are well understood by models from
group theory, we still lack a similar, canonical model for ap-
proximate and partial symmetry.

9. Applications

Extracted symmetries, global or partial, exact or approxi-
mate, essentially provide relations across different parts of a
shape, as discussed in the previous section. Such high-level
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3,000 500

Figure 22: (Top panel) An input architectural design is an-
alyzed to reveal six symmetric patches, which are then si-
multaneously optimized to create exactly symmetric surfaces
and compatible meshes. (Bottom panel) Approximate sym-
metries of inputs are made exact, and the resultant meshes
are simplified while respecting the symmetry relations. The
number below each model indicate the corresponding vertex
count [MGPO7].

understanding of the input 3D geometry enables a range of
applications, which are otherwise difficult to perform on un-
organized low-level primitives. We now discuss the main ap-
plication areas where the extracted non-local symmetry re-
lations are used.

Model acquisition and representation. Symmetry rela-
tions are essentially equivalence among different parts of
an object. In other words, symmetric parts represent redun-
dant geometric regions, and thus are repeated measurements
of the same underlying geometry. Such redundant obser-
vations allow denoising the input in presence of unbiased
noise. More specifically, say surface patch Sy is symmetric
with surface patches S1,9,,... under transforms 71, 7>,...,
respectively, i.e., S; & T;(Sp) for i = 1,.... Then for any
point p € Sy the corresponding point on the i-th patch is
given by the point q; € S; such that d(q;,7;(p)) is mini-
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mized. Note that under perfect symmetry q; = 7;(p). Such
correspondence information is used for non-local denois-
ing [BCMO8, LLZM10] and scan consolidation [ZSW*10]
of man-made objects (e.g., building facades, 3D ornamenta-
tion, etc.) where symmetry relations are common. Further,
in regions of missing data, instead of looking for points q;,
surface information is propagated using symmetry informa-
tion T;(p) for data completion [PMG™05, TWO05, XZT*09]
(see Figure 21).

In addition to model improvement, symmetry relations
also suggest a novel acquisition framework. The main obser-
vation is that for redundant object regions essentially one has
to recover the transformations 7; while using the base patch
So for model construction. This effectively allows a smart
acquisition process where base patch Sg is to be acquired
at a high resolution, while for the corresponding symmet-
ric relations only the symmetry transforms are needed, and
hence significantly coarser scanning suffice. The challenge,
however, is reliable symmetry detection, which can be chal-
lenging in severely undersampled data.

Detected symmetries, if organized by explicitly storing
the symmetry transforms, factor out model redundancies and
thus produce a compressed representation, e.g., if geometry
is organized as a tree-structure [MGP06,SKS06] or in a hier-
archy [WXL*11] (see Figure 21). However, as discussed in
Section 8, such representations are typically non-canonical.
Intuitively such factored representations can provide a mea-
sure of information content of shapes, rather than simply
measuring the model complexity in terms of vertex count.

Geometric models, however, are rarely perfectly symmet-
ric. Deviations from perfect symmetry arise due to high-
frequency noise, or due to low-frequency global deforma-
tions. Hence, researchers have proposed to symmetrize mod-
els, i.e., factor out deformations or deviations to increase the
symmetry or redundancy of 3D models, by allowing certain
model deformations [MGP07, PGR07]. Symmetrized mod-
els can also be used to produce equivalent or symmetric tri-
angulation, which is particularly useful for symmetric ge-
ometry processing [PGRO7], or to reuse of identical surface
patches especially for efficient and economical manufactur-
ing [EKS*10, FLHCOI10], etc. In the future, we expect to
see more efforts on how to characterize the space of such
model variations, especially ones with low degrees of free-
dom [BWM™*11,0LGM11,KLM*12].

Model manipulation. We discussed how properties relat-
ing to symmetries in the object-domain manifest as clusters
in the transform domain, with the fuzziness of clusters in-
dicating the extent of approximation in the detected sym-
metries. Based on this observation, Mitra et al. [MGP07]
present a non-local geometry editing framework wherein
fuzzy clusters are tightened and the corresponding point-pair
positions suitably adjusted to enhance object symmetries,
both local and global. Similarly one can perform symmet-
ric remeshing and simplification where the progressive sim-
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Figure 23: Detecting regularity in shapes specially building
facades and similar man-made structures, allow us to infer
plausible procedural rules [PMO1, MWH"* 06, MZWVGO7] to
recreate the models. This allows smart geometric modeling
to perform global geometric edits by inserting and deleting
geometric patches, or replacing the base geometric patches,
while conferring to the inferred procedural rules [PMW* 08,
MPOS].

pler meshes still retain and respect the original object sym-
metries [MGPO7, PGRO7] (see Figure 22). Intuitively, since
symmetry manifests itself better in the transform domain, a
coupled spatial and transform domain editing paradigm is
natural for symmetry-aware manipulations.

Recently, Panozzo et al. [PLPZ12] have introduced a
framework to synthesize direction, line, or cross fields that
respect the symmetries of the surfaces. They explore gen-
eralized reflections of surfaces to construct fields that ad-
here both to the coarse global symmetries and local non-
symmetric features of the surfaces. These symmetric fields
are used in various applications including remeshing and
non-photorealistic rendering.

Symmetry of an object often relates to its charac-
teristic form, specially for man-made objects. Gal et
al. [GSMCOO09] observe that such objects can be character-
ized using 1D feature curves or wires. Such features are then

Figure 24: Inverse procedural modeling from symmetry: By
attaching building blocks derived from boundaries between
non-symmetric area (docking sides), shape variations can be
created automatically (top; original in red). Sliding dockers
(bottom, orange) generalize the idea to partial patterns.

analyzed to reveal their mutual relations and symmetry prop-
erties, which are preserved using an optimization in course
of subsequent manipulations. Explicitly distilling such sym-
metry relations as a minimalist curve network, which can
act as intuitive interaction handles for manipulation of shape
abstractions [MZL*09] (see Figure 25).

Model synthesis. Symmetry is ubiquitous in natural ob-
jects, man-made shapes, and architectural forms. Extracted
symmetries provide valuable understanding about the reg-
ularity of the structures, which often relate to form, func-
tion, and aesthetics. The extracted symmetric patches can be
treated as alphabets and combined with the detected symme-
try transforms in order to construct an inverse-shape gram-
mar [SG71] for the input shapes. The constructed grammar
can then be used to procedurally create variations of the in-
put geometry of similar characteristics [PMO1, MWH*06,
MZWVGO07]. Such a workflow has been demonstrated in
the context of modeling architectural buildings and fa-
cades [PMW*08, MP08] (see Figure 23).

A formal framework for inferring shape grammars from
symmetry information has been developed by Bokeloh et
al. [BWS10]. The main challenge is how to extract building
blocks that fit together, i.e., symmetric parts that can be ex-
changed without changing the object — this, however, does
not create any shape variations. Therefore, in the context
of synthesis, interesting regions comprise of the boundaries
between symmetric and non-symmetric areas. Such bound-
aries are referred to as docking sites that allow different non-
symmetric parts to be exchanged. This exchange of parts en-
capsulated in symmetry defines a rewriting system for cre-
ating shape modifications, which can be transformed into a
constructive grammar towards creating a rich set of shape
variations. Additionally, such a technique detects repetitive
regular patterns that form a regular grid (see Figure 3) and
also allows the user to change the repetition count. This has
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Figure 25: (Top panel) Preservation of analyzed sym-
metry relations in iWires a shape manipulation frame-
work [GSMCOO09], (bottom panel) distilling and highlight-
ing of symmetry relations for creating abstractions of man-
made shapes [MZL* 09]. (Images courtesy of Gal et al. and
Mehra et al. respectively.)

been demonstrated by Bokeloh et al. [BWKS11], where slid-
ing dockers are extracted to describe partial regularity within
more general shapes (see Figure 24). In general, we can con-
sider the regularity structure of a scene as an invariant for
structure preserving shape editing [BWSK12].

Shape classification. Kazhdan and colleagues [KFR04] use
symmetry as a distinguishing feature for classification and
retrieval of shapes. They relate global rotational and re-
flective symmetries of objects to properties of their spher-
ical harmonic expansions (see also work of Martinet et
al. [MSHSO06]) and the coefficients as symmetry descriptors.
The symmetry augmented representations were then used to
compare shapes. The method presented a compact, rotation
invariant shape descriptor that has been shown to be an effec-
tive descriptor on the Princeton shape database [SMKF04]
(see Figure 26). The approach has been extended later to
make use of symmetry transforms of objects [PSG*06].
More recently, Giachetti et al. [GL12] have presented the
area projection transform to detect regions in a shape which
are likely to be the center of radial symmetry. This trans-
form is similarly used to build a shape descriptor for shape
retrieval applications.

Symmetry can also be utilized to find mappings across
different surfaces as it captures recognizable and semantic
features of many objects. Liu et al. [LKF12] use the global
reflective symmetry curves as global features to find a coarse
alignment between two shapes and use this information to
compute surface mappings. These mappings are important
for shape analysis applications.

Symmetry is also believed to be a dominating factor
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Figure 26: (Top panel) Symmetry descriptors are used to
query a database for shape retrieval [KFRO04]. (Bottom
panel) Good viewpoints are automatically selected to min-
imize the symmetry in the scene [PSG*06] and a symmetry-
induced hierarchical organization of the parts of a model is
presented [WXL*11]. (Images courtesy of Kazhdan et al.,
Podolak et al., and Wang et al. respectively.)

in shape perception and viewpoint selection [RWY95].
Podolak et al. [PSG*06] use the detected reflective symme-
tries to automatically select preferred viewpoints for objects
and to pose them better. Wang et al. [WXL*11] discuss how
to group objects hierarchically by a perceptually motivated
scheme that combines symmetry and proximity information.
The result is an intuitive though non-canonical decomposi-
tion of shapes that is used for structure-preserving editing
(see Figure 26).

10. Future Directions

Symmetry of geometric shapes is an important tool in ge-
ometry processing. Arguably, it takes us one step closer to
the ultimate goal of a computationally understanding three-
dimensional objects. The state-of-the-art provides a wide
range of algorithms for detecting extrinsic and intrinsic sym-
metries in various types of data, ranging from clean meshes
to point clouds from 3D scanners. Nevertheless, there are
many problems yet to be resolved. Maybe, the bigger part
of the challenge is even still ahead of us. Below, we give
a brief overview of open problems where no good solution
is known. We structure these into three areas: (i) improving
detection, (ii) extracting more general notions of symmetry,
and (iii) structural models of redundancy.

Improving symmetry detection. Although significant ad-
vances has been made towards symmetry detection, there are
still challenging situations that cannot be handled. One as-
pect is data quality. For very poor data, with a large amount
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of noise and outliers, or substantial portions of data miss-
ing, existing approaches run into problems, in particular
in the feature extraction and aggregation stages. Intrinsic
approaches are particularly troubled — currently, none of
the techniques handle objects with large scale topological
noise, such as acquisition holes and contacts in a raw 3D
scan. On the one hand, directions to address these issues
could include traditional measures such as multi-resolution
techniques, inpainting and feature extrapolation approaches,
various data filtering and preprocessing steps, and com-
bining information from multiple data sources when avail-
able [JTC11,LZS*11, CML*12, HYM13]. Further, uncer-
tainty in the input at some point unavoidably shows up as
uncertainty in the output, which could be modeled explicitly.
Statistical representation of potential symmetry is a direction
that could possibly contribute to addressing such challenges.

Another aspect of the detection itself is computational
performance: Although known techniques are efficient
enough to handle objects such as larger buildings within a
few minutes, there is no technique that can process a scan of
an entire city, or other instances of massive data sets. Neither
the absolute computational costs nor the asymptotic scal-
ing behavior for growing amounts of data is adequate for
such scenarios. Similarly, there are no online algorithms that
could for example process data that is coming in in real-time
from a dynamic 3D scanner such as Microsoft Kinect.

More general notions of symmetry. Existing symmetry
detection methods have largely explored actions of trans-
lations, reflections, rotations, scaling, as well as intrinsic
isometries of a fixed manifold. However, many real-world
objects, in particular organic shapes, show redundancy that
cannot be characterized by these notions of symmetry, not
even in an approximate sense. For example, the leaves of a
plant might all roughly look alike, although no pair of them
is actually related by a similarity transform. Further, there
exist semantic categories such as “windows” or “cars” that
share common traits that are impossible to capture by just
fixing a priori set of transformation parameters. There are
two key challenges: First, what is a good model of general
similarity? The main conceptual pitfall is that very general
mappings between shapes are prone to overfitting; the fewer
restrictions we place upon the matching of parts, the easier
it becomes to relate things that, to a human, are clearly unre-
lated. Finding a good model for significant structural redun-
dancy is probably one of the major and very difficult chal-
lenges in the field. The second problem is efficiency; given
such general matching models, how can the solution be com-
puted in a reasonable amount of time? As an example, there
has been a recent attempt to generalize matchings to linear
subspaces of variations [BWM™11] but efficiency remains a
challenge.

Structural models. Finally, there is the challenge of under-
standing the structure of the redundancy in the symmetry in-

formation. The known approaches use tools from group the-
ory to structure the symmetries, but there are several restric-
tions: While mutually commutative transformations yield
easily understood grid structures [PMW *08], complex non-
commutative structures are more difficult to handle. Once
we only observe excerpts, there is a risk of overfitting, i.e.,
misinterpretation of the data in terms of a structure that is
unnecessarily complex. Aside from group structures of the
symmetries themselves, there is also the question what else
the structural redundancy tells us about the shape. For exam-
ple, what is the information content of a shape with partial
symmetry or regularity, and what is the relative information
if we know a set of shapes and observe a new one that is par-
tially similar? In the end, this might lead to an information
theory of shapes that unlike traditional shape compression
takes self-similarity and symmetry into account.

11. Conclusion

Symmetry is ubiquitous in nature and in man-made ob-
jects. It captures self-similarity of objects under the action
of transformations, and can be naturally thought of in terms
of transformation groups. Automatic detection of symme-
try depends on the type of symmetries that are of interest,
i.e., whether exact or approximate, global or partial, and Eu-
clidean or intrinsic. The choice of symmetry type for shape
analysis often depends on the family of objects and target
applications. We presented a framework to organize state-of-
the-art symmetry detection algorithms based on their choices
in the key phases of the algorithms. Finally, we discussed a
wide range of applications organized into groups depending
on the phase of a typical geometry processing framework
they affect. Symmetry-aided processing can be applied in
the shape acquisition phase, in the geometry manipulation
phase, and also can be used for categorizing and organizing
the captured 3D geometry of shapes.

In the future we expect research efforts to be devoted
towards development of symmetry detection algorithms to
handle very large volumes of data, in the form of a parallel
approach or as an online algorithm. The chief difficulty in
developing such algorithms come from the global nature of
symmetry that tightly couples the overall geometry making
it difficult to work solely with local reasoning, without any
prior knowledge or preprocessing of the data.

Symmetry amounts to redundancy in the context of infor-
mation theory. This raises questions about what geometric
information is fundamental, and how we can efficiently rep-
resent and store geometric shapes. Similar to many image
compression procedures, it is conceivable to store a com-
pact base representation as a symmetrized version of the
shape, and then subsequently store deviations from the sym-
metrized shape. Intuitively this can be thought to be a level
of symmetry representation, similar to frequency band rep-
resentations for images. But, we still lack a canonical algo-
rithm to quantify information content of 3D geometry.
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In contrast to point sets or triangle meshes, a symmetry-
aware representation provides high-level cues about the ob-
jects: symmetry properties describe the relation of object
parts to themselves, thereby abstracting from the concrete
shape and emphasizing on structural relations. Thus, sym-
metry is an important building block in gaining a high level
understanding of geometry. A grand goal, however, is to
infer meaningful shape semantics via computational shape
analysis. Semantics can be in terms of motion, in terms of
function of object parts, or degrees of freedom. A combina-
tion of geometric insights [XWY*09, GSMCO09,MYY *10]
with data-driven approaches [FCODS08, KHS10] to capture
complex patterns in the geometric structure and their rela-
tion to semantic attributes [ZCOM13], may possibly bring us
closer solving this grand goal. Symmetry — the redundancy
within a geometric object and the structure of such redun-
dancy — will continue to play an important role in model ac-
quisition, understanding, manipulation, manufacturing, and
also towards efficient, economic, aesthetic, and functional
object designs.

Acknowledgement. This research has been supported by
the Marie Curie Career Integration Grant 303541, an UCL
Impact grant, an Adobe research grant, and the ERC Starting
Grant 257453 COSYM. The authors thank Hao (Richard)
Zhang and the anonymous reviewers for their comments on
various versions of this manuscript.

References

[ACOM12] AIGER D., COHEN-OR D., MITRA N. J.: Repetition
maximization based texture rectification. Computer Graphics Fo-
rum (EUROGRAPHICS) (2012). 21

[AMCOO08] AIGER D., MITRA N. J., COHEN-OR D.: 4-points
congruent sets for robust surface registration. ACM Trans. on
Graphics (Proc. SSIGGRAPH) 27, 3 (2008), 85:1-85:10. 9

[AMWWS88] ALT H., MEHLHORN K., WAGENER H., WELZL
E.: Congruence, similarity and symmetries of geometric objects.
Discrete Comput. Geom. 3, 3 (1988), 237-256. 4,7

[Ata85] ATALLAH M. J.: On symmetry detection. IEEE Trans.
Comput. 34,7 (1985), 663-666. 4, 7

[BAK10] BERMANIS A., AVERBUCH A., KELLER Y.: 3-d sym-
metry detection and analysis using the pseudo-polar fourier trans-
form. Int. Journal of Computer Vision 90, 2 (2010), 166—182. 4

[BBW*08] BERNER A., BOKELOH M., WAND M., SCHILLING
A., SEIDEL H.-P.: A graph-based approach to symmetry detec-
tion. In Symposium on Volume and Point-Based Graphics (2008),
pp. 1-8. 4

[BBW*09a] BERNER A., BOKELOH M., WAND M,
SCHILLING A., SEIDEL H.-P.: Generalized intrinsic symmetry
detection. Research Report MPI-1-2009-4-005, Max-Planck-
Institut fiir Informatik, 2009. 4, 11

[BBW*09b] BOKELOH M., BERNER A., WAND M., SEIDEL
H.-P., SCHILLING A.: Symmetry detection using line fea-
tures. Computer Graphics Forum (Proc. EUROGRAPHICS) 28,
2 (2009), 697-706. 4, 8, 11, 12, 15

[BCBSG10] BEN-CHEN M., BUTSCHER A., SOLOMON J.,
GUIBAS L.: On discrete killing vector fields and patterns on
surfaces. In Proc. of Symp. of Geometry Processing (2010). 4, 16

submitted to COMPUTER GRAPHICS Forum (12/2012).

[BCMO08] BUADES A., COLL B., MOREL J.-M.: Nonlocal im-
age and movie denoising. Int. Journal of Computer Vision 76, 2
(2008), 123-139. 17

[BM92] BESL P.J., MCKAY N. D.: A method for registration of
3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14,2 (1992),
239-256. 11, 12

[BWKS11] BOKELOH M., WAND M., KOLTUN V., SEIDEL H.-
P.:  Pattern-aware shape deformation using sliding dockers.
ACM Trans. on Graphics (Proc. SIGGRAPH ASIA) 30, 6 (2011),
123:1-123:10. 4, 16, 19

[BWM*11] BERNER A., WAND M., MITRA N. J., MEWES D.,
SEIDEL H.-P.: Shape analysis with subspace symmetries. Com-
puter Graphics Forum (Proc. EUROGRAPHICS) 30, 2 (2011),
277-286. 4, 17,20

[BWS10] BOKELOH M., WAND M., SEIDEL H.-P.: A connec-
tion between partial symmetry and inverse procedural model-
ing. ACM Trans. on Graphics (Proc. SIGGRAPH) 29, 4 (2010),
104:1-104:10. 12, 15, 18

[BWSK12] BOKELOH M., WAND M., SEIDEL H.-P., KOLTUN
V.: An algebraic model for parameterized shape editing. ACM
Trans. on Graphics (Proc. SIGGRAPH) 31, 4 (2012), 78:1—
78:10. 19

[Car76] CARMO M. D.: Differential Geometry of Curves and
Surfaces. Prentice Hall, 1976. 8, 13

[CK10] CHERTOK M., KELLER Y.: Spectral symmetry analy-
sis. IEEE Trans. Pattern Anal. Mach. Intell. 32,7 (2010), 1227
-1238. 4

[CM92] CHEN Y., MEDIONI G.: Object modelling by regis-
tration of multiple range images. Image Vision Comput. 10, 3
(1992), 145-155. 11, 12

[CML*12] CEYLAN D., MITRA N. J., L1 H., WEISE T., PAULY
M.: Factored facade acquisition using symmetric line arrange-
ments. Computer Graphics Forum (Proc. EUROGRAPHICS) 31,
1 (2012), 671-680. 20

[CP03] CAzALS F., POUGET M.: Estimating differential quanti-
ties using polynomial fitting of osculating jets. In Proc. of Symp.
of Geometry Processing (2003), pp. 177-187. 8

[EKS*10] EIGENSATZ M., KILIAN M., SCHIFTNER A., MI-
TRA N. J., POTTMANN H., PAULY M.: Paneling architectural
freeform surfaces. ACM Trans. on Graphics (Proc. SSIGGRAPH)
29,3 (2010), 45:1-45:10. 17

[FCODS08] Fu H., COHEN-OR D., DROR G., SHEFFER A.:
Upright orientation of man-made objects. ACM Trans. on Graph-
ics (Proc. SIGGRAPH) 27, 3 (2008), 42:1-42:7. 21

[FLHCO10] Fu C.-W.,LAIC.-F., HEY., COHEN-OR D.: K-set
tilable surfaces. ACM Trans. on Graphics (Proc. SIGGRAPH) 29,
3(2010), 44:1-44:6. 17

[GCO06] GAL R., COHEN-OR D.: Salient geometric features for
partial shape matching and similarity. ACM Trans. on Graphics
25,1 (2006), 130-150. 4, 8,9

[GG04] GELFAND N., GUIBAS L. J.: Shape segmentation using
local slippage analysis. In Proc. of Symp. of Geometry Processing
(2004), pp. 214-223. 4,9, 11, 16

[GL12] GIACHETTI A., LOovATO C.: Radial symmetry detection
and shape characterization with the multiscale area projection
transform. In Proc. of Symp. of Geometry Processing (2012),
pp. 1669-1678. 19

[GSMCO09] GAL R., SORKINE O., MITRA N. J., COHEN-OR
D.: iwires: an analyze-and-edit approach to shape manipulation.
ACM Trans. on Graphics (Proc. SSIGGRAPH) 28, 3 (2009), 1-10.
11, 18, 19, 21



22 Mitra, Pauly, Wand, Ceylan / Symmetry in 3D Geometry

[HAWGO08] HUANG Q.-X., ADAMS B., WICKE M., GUIBAS
L. J.: Non-rigid registration under isometric deformations. In
Proc. of Symp. of Geometry Processing (2008), pp. 1449-1457.
13

[HYM13] HALAWANI S., YANG Y., MITRA H. L. N. J.: In-
teractive facades: Analysis and synthesis of semi-regular fa-
cades. Computer Graphics Forum (Proc. EUROGRAPHICS) 32,
1(2013). 20

[JTC11] JIANG N., TAN P., CHEONG L. F.: Multi-view repetitive
structure detection. In Proc. of the IEEE Inter. Conf. on Computer
Vision (2011), pp. 535-542. 20

[KBW*12] KOLOJANOV J., BOKELOH M., WAND M., GUIBAS
L., SLUSALLEK P., SEIDEL H.-P.: Microtiles: Extracting build-
ing blocks from correspondences. In Proc. of Symp. of Geometry
Processing (2012). 15, 16

[KCD*03] KAZHDAN M., CHAZELLE B., DOBKIN D,
FUNKHOUSER T., RUSINKIEWICZ S.: A reflective symmetry
descriptor for 3d models. Algorithmica 38, 1 (2003), 201-225.
4,7,10

[KFR04] KAZHDAN M., FUNKHOUSER T., RUSINKIEWICZ S.:
Symmetry descriptors and 3D shape matching. In Proc. of Symp.
of Geometry Processing (2004), pp. 115-123. 4,7, 11, 19

[KHS10] KALOGERAKIS E., HERTZMANN A., SINGH K.:
Learning 3d mesh segmentation and labeling. ACM Trans. on
Graphics (Proc. SSIGGRAPH) 29, 3 (2010), 102:1-102:12. 21

[KLCF11] KiM V., LIPMAN Y., CHEN X., FUNKHOUSER T.:
Mobiiis transformations for global intrinsic symmetry analysis.
In Proc. of Symp. of Geometry Processing (2011), pp. 1689—
1700. 4, 14

[Kle93] KLEIN F.: Vergleichende betrachtungen u"ber neuere ge-
ometrische forschungen. Mathematische Annalen 43 (1893). 2

[KLM*12] KiMm V. G., L1 W., MITRA N. J., DIVERDI S.,
FUNKHOUSER T.: Exploring collections of 3d models using
fuzzy correspondences. ACM Transactions on Graphics 31, 4
(2012), 54:1-54:11. 17

[LCDF10] LipMAN Y., CHEN X., DAUBECHIES I,
FUNKHOUSER T.: Symmetry factored embedding and dis-
tance. ACM Trans. on Graphics (Proc. SIGGRAPH) 29, 4
(2010), 103:1-103:12. 4, 8, 12, 14, 15

[LFO9] LIPMAN Y., FUNKHOUSER T.: Mobius voting for surface
correspondence. ACM Trans. on Graphics (Proc. SSIGGRAPH)
28, 3 (2009), 72:1-72:12. 13, 14

[LKF12] LiuT., KiM V. G., FUNKHOUSER T.: Finding surface
correspondences using symmetry axis curves. In Proc. of Symp.
of Geometry Processing (2012), pp. 1607-1616. 19

[LLZM10] L1 G., Liu L., ZHENG H., MITRA N. J.: Analy-
sis, reconstruction and manipulation using arterial snakes. ACM
Trans. on Graphics (Proc. SIGGRAPH ASIA) 29, 6 (2010),
152:1-152:10. 17

[LTSW09] LAsowskI R., TEVS A., SEIDEL H.-P., WAND M.:
A probabilistic framework for partial intrinsic symmetries in geo-
metric data. In Proc. of the IEEE Inter. Conf. on Computer Vision
(2009), pp. 963-970. 4, 14

[LZS*11] Li1Y., ZHENG Q., SHARF A., COHEN-OR D., CHEN
B., MITRA N. J.: 2d-3d fusion for layer decomposition of urban
facades. In Proc. of the IEEE Inter. Conf. on Computer Vision
(2011), pp. 882 —889. 20

[MBB10] MITRA N.J., BRONSTEIN A., BRONSTEIN M.: Intrin-
sic regularity detection in 3d geometry. In Proc. of the European
Conf. on Computer Vision (2010), pp. 398-410. 4, 14

[MGP06] MITRA N. J., GUIBAS L., PAULY M.: Partial and ap-
proximate symmetry detection for 3d geometry. ACM Trans. on
Graphics (Proc. SIGGRAPH) 25, 3 (2006), 560-568. 4, 8, 9, 10,
12, 15, 16, 17

[MGP07] MITRA N. J., GUIBAS L. J., PAULY M.: Symmetriza-
tion. ACM Trans. on Graphics (Proc. SSIGGRAPH) 26, 3 (2007),
63:1-63:8. 13,17, 18

[MGPG04] MITRA N. J., GELFAND N., POTTMANN H.,
GUIBAS L.: Registration of point cloud data from a geometric
optimization perspective. In Proc. of Symp. of Geometry Process-
ing (2004), pp. 23-31. 8, 11, 12

[MPO8] MITRA N. J., PAULY M.: Symmetry for architectural
design. In Advances in Architectural Geometry (2008), pp. 13—
16. 16, 18

[MSHS06] MARTINET A., SOLER C., HOLZSCHUCH N., SIL-
LION F.: Accurate detection of symmetries in 3d shapes. ACM
Trans. on Graphics 25, 2 (2006), 439 —464. 4,7, 19

[MWH*06] MULLER P., WONKA P., HAEGLER S., ULMER A.,
VAN GooOL L.: Procedural modeling of buildings. ACM Trans.
on Graphics (Proc. SIGGRAPH) 25, 3 (2006), 614-623. 18

[MYY*10] MITRA N. J., YANG Y.-L., YAN D.-M., L1 W,
AGRAWALA M.: Illustrating how mechanical assemblies work.
ACM Trans. on Graphics (Proc. SSIGGRAPH) 29, 4 (2010), 58:1—
58:12. 21

[MZL*09] MEHRA R., ZHOU Q., LONG J., SHEFFER A.,
GOOCH A., MITRA N. J.: Abstraction of man-made shapes.
ACM Trans. on Graphics (Proc. SIGGRAPH) 28, 5 (2009),
137:1-137:10. 11, 18, 19

[MZWVGO07] MULLER P., ZENG G., WONKA P., VAN GOOL
L.: Image-based procedural modeling of facades. ACM Trans.
on Graphics (Proc. SIGGRAPH) 26, 3 (2007). 18

[NLCKO5] NADLER B., LAFON S., CoIFMAN R. R,
KEVREKIDIS I. G.:  Diffusion maps, spectral clustering
and eigenfunctions of fokker-planck operators. In Advances in
Neural Information Processing Systems (2005), pp. 955-962. 12

[OLGMI11] OVSJANIKOV M., L1 W., GUIBAS L., MITRA N. J.:
Exploration of continuous variability in collections of 3d shapes.
ACM Trans. on Graphics (Proc. SSIGGRAPH) 30,4 (2011), 33:1-
33:10. 17

[OSGO8] OVSJANIKOV M., SUN J., GUIBAS L.: Global intrinsic
symmetries of shapes. In Proc. of Symp. of Geometry Processing
(2008), pp. 1341-1348. 4, 8, 14

[PGRO7] PODOLAK J., GOLOVINSKIY A., RUSINKIEWICZ S.:
Symmetry-enhanced remeshing of surfaces. In Proc. of Symp. of
Geometry Processing (2007), pp. 235-242. 16, 17, 18

[PLPZ12] PANOzzO D., LIPMAN Y., PurPPO E., ZORIN D.:
Fields on symmetric surfaces. ACM Trans. on Graphics (Proc.
SIGGRAPH) 31, 4 (July 2012), 111:1-111:12. 18

[PMO1] PARISH Y. I. H., MULLER P.: Procedural modeling of
cities. In Proceedings of SIGGRAPH (2001), pp. 301-308. 18

[PMG*05] PAULY M., MITRA N. J., GIESEN J., GROSS M.,
GUIBAS L.: Example-based 3d scan completion. In Proc. of
Symp. of Geometry Processing (2005), pp. 23-32. 17

[PMW*08] PAULY M., MITRA N. J., WALLNER J., POTTMANN
H., GUIBAS L.: Discovering structural regularity in 3D geome-
try. ACM Trans. on Graphics (Proc. SSGGRAPH) 27, 3 (2008),
43:1-43:11. 4, 8,9, 10, 13, 16, 18, 20

[PSG*06] PODOLAK J., SHILANE P., GOLOVINSKIY A.,
RUSINKIEWICZ S., FUNKHOUSER T.: A planar-reflective sym-
metry transform for 3D shapes. ACM Trans. on Graphics (Proc.
SIGGRAPH) 25, 3 (2006), 549-559. 4, 6, 8, 10, 11, 14, 19

submitted to COMPUTER GRAPHICS Forum (12/2012).



Mitra, Pauly, Wand, Ceylan / Symmetry in 3D Geometry 23

[PWY*07] POTTMANN H., WALLNER J., YANG Y.-L., LAT Y.-
K., HU S.-M.: Principal curvatures from the integral invariant
viewpoint. Comput. Aided Geom. Des. 24, 8-9 (2007), 428-442.
8

[RBBKO7] RAVIV D., BRONSTEIN A. M., BRONSTEIN M. M.,
KIMMEL R.: Symmetries of non-rigid shapes. In Proc. of the
IEEE Inter. Conf. on Computer Vision (2007), pp. 1-7. 4,7, 14,
15

[RBBK09] RAVIV D., BRONSTEIN A. M., BRONSTEIN M. M.,
KIMMEL R.: Full and partial symmetries of non-rigid shapes.
Int. Journal of Computer Vision 89, 1 (2009), 18-39. 4

[RBS*10] RAVIV D., BRONSTEIN M. M., SAPIRO G., BRON-
STEIN A. M., KIMMEL R.: Diffusion symmetries of non-rigid
shapes. In Proc. 3DPVT (2010). 4

[Rot94] ROTMAN J.: An Introduction to the Theory of Groups.
4th edition, Springer, 1994. 2

[Rus04] RUSINKIEWICZ S.: Estimating curvatures and their
derivatives on triangle meshes". In Proceedings of the 3D Data
Processing, Visualization, and Transmission, 2nd International
Symposium (2004), pp. 486-493. 8

[RusO07a] RUSTAMOV R. M.: Augmented symmetry transforms.
In Proc. of Int. Conf. on Shape Modeling and Applications
(2007), pp. 13-20. 11

[Rus07b] RUSTAMOV R. M.: Laplace-beltrami eigenfunctions
for deformation invariant shape representation. In Proc. of Symp.
of Geometry Processing (2007), pp. 225-233. 8, 14

[RWY95] REISFELD D., WOLFSON H., YESHURUN Y.: Context
free attentional operators: the generalized symmetry transform.
Int. Journal of Computer Vision 14 (1995), 119-130. 19

[SG71] STINY G., GIps J.: Shape grammars and the generative
specification of painting and sculpture. In Proceedings of IFIP
Congress (1971). 18

[Sha08] SHAMIR A.: A survey on mesh segmentation techniques.
Computer Graphics Forum 27, 6 (2008), 1539-1556. 5

[SKS06] SIMARI P., KALOGERAKIS E., SINGH K.: Folding
meshes: Hierarchical mesh segmentation based on planar sym-
metry. In Proc. of Symp. of Geometry Processing (2006),
pp. 111-119. 4,15, 17

[SMKFO04] SHILANE P., MIN P., KAZHDAN M., FUNKHOUSER
T.: The princeton shape benchmark. In Proc. of Shape Modeling
International (2004), pp. 167-178. 19

[SOG09] SuUN J., OVSJANIKOV M., GUIBAS L.: A concise and
provably informative multi-scale signature based on heat diffu-
sion. In Proc. of Symp. of Geometry Processing (2009), pp. 1383—
1392. 8

[SS87] SCHWARTZ J. T., SHARIR M.: Identification of partially
obscured objects in two and three dimensions by matching noisy
characteristic curves. International Journal of Robotics Res 6, 2
(1987),29-44. 8

[SS97] SuN C., SHERRAH J.: 3d symmetry detection using the
extended gaussian image. IEEE Trans. Pattern Anal. Mach. In-
tell. 19,2 (1997), 164-168. 4,7

[SSCO08] SHAPIRA L., SHAMIR A., COHEN-OR D.: Consistent
mesh partitioning and skeletonisation using the shape diameter
function. Visual Computer 24, 4 (2008), 249-259. 13

[Tau95] TAUBIN G.: Estimating the tensor of curvature of a sur-
face from a polyhedral approximation. In Proc. of the IEEE Inter.
Conf. on Computer Vision (1995), pp. 902—. 8

[TMS09] TZIMIROPOULOS G., MITIANOUDIS N., STATHAKI
T.: A unifying approach to moment-based shape orientation and

submitted to COMPUTER GRAPHICS Forum (12/2012).

symmetry classification. Trans. Img. Proc. 18, 1 (2009), 125—
139. 7

[TWO05] THRUN S., WEGBREIT B.: Shape from symmetry.
In Proc. of the IEEE Inter. Conf. on Computer Vision (2005),
pp. 1824-1831. 4, 16, 17

[VKZHCO11] vAN KAICK O., ZHANG H., HAMARNEH G.,
COHEN-OR D.: A survey on shape correspondence. Computer
Graphics Forum 30,6 (2011), 1681-1707. 5

[Wey52] WEYL H.: Symmetry. Princeton University Press, 1952.
2

[WR97] WOLFsSON H. J., RiIGouTsos I.: Geometric hashing:
An overview. IEEE Comput. Sci. Eng. 4,4 (1997), 10-21. 8,9

[WXL*11] WANG Y., XU K., L1 J., ZHANG H., SHAMIR A.,
Liu L., CHENG Z., XIONG Y.: Symmetry hierarchy of man-
made objects. Computer Graphics Forum (Proc. EUROGRAPH-
ICS) 30, 2 (2011), 287-296. 15, 17, 19

[xu2] 14

[XWY*09] Xu W., WANG J., YIN K., ZHOU K., VAN DE
PANNE M., CHEN F., GUO B.: Joint-aware manipulation of de-
formable models. ACM Trans. on Graphics (Proc. SIGGRAPH)
28, 3 (2009), 35:1-35:9. 21

[XZT*09] Xu K., ZHANG H., TAGLIASACCHI A., LIU L., LI
G., MENG M., XIONG Y.: Partial intrinsic reflectional symmetry
of 3D shapes. ACM Trans. on Graphics (Proc. SIGGRAPH) 28,
5(2009), 138:1-138:10. 4, 13, 14, 15, 17

[ZCOM13] ZHENG Y., COHEN-OR D., MITRA N. J.: sfarr:
Functional substructures for part compatibility. — Computer
Graphics Forum (Proc. EUROGRAPHICS) 32, 1 (2013). 21

[ZPA95] ZABRODSKY H., PELEG S., AVNIR D.: Symmetry as a
continuous feature. IEEE Trans. Pattern Anal. Mach. Intell. 17,
12 (1995), 1154-1166. 4, 6, 10

[ZSW*10] ZHENG Q., SHARF A., WANG.,L1Y., MITRAN.J.,
COHEN-OR D., CHEN B.: Non-local scan consolidation for 3d
urban scenes. ACM Trans. on Graphics (Proc. SIGGRAPH) 29,
3(2010), 94:1-94:9. 16, 17



