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Abstract

�e world around us consists of objects of vastly varying shapes, sizes, and geometric com-
plexity. A natural question is how to capture such geometric variations? We propose algo-
rithms for capturing, comparing, and analyzing such D geometry.

In the �rst part of this thesis, we propose algorithms to automate the various stages
of a standard shape acquisition pipeline. Typically, a D scanner captures object geometry
from multiple directions. From each viewpoint we get a partial geometric model or a scan.
Scan registration involves stitching these scans together to form one consolidatedmodel. We
present an algorithm for the automatic global rigid alignment of two D shapes, without any
assumptions about their initial poses. We implicitly evaluate all the possible correspondence
assignments between a set of selected feature points without having to explicitly enumerate
each of the correspondences. �e rough initial alignment is further re�ned using local align-
ment which is posed as a minimization of the squared distance between the underlying sur-
faces. We locally approximate the squared distance �eld using quadratic functions and then
develop a linear system whose solution gives the local aligning rigid transform. A
er model
registration, we o
en get an incomplete representation of the scanned object with areas of
missing data. We present a novel approach for plausible D model completion using geomet-
ric priors. Our method retrieves suitable context models from a model database, warps the
retrievedmodels to conformwith the input data, and consistently blends the warpedmodels
to obtain the �nal consolidated D shape.

In the second part, we introduce two shape analysis tools. We present a new algorithm
that processes geometricmodels and e�ciently discovers and extracts a compact representa-
tion of their Euclidean symmetries. �ese symmetries can be partial, approximate, or both.
�e extracted symmetry graph representation captures important high-level information
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about the structure of a geometric model. We also propose a compact shape signature based
on probabilistic �ngerprints. Our method is robust to noise, invariant to rigid transforms,
handles articulated deformations, and e�ectively detects partial matches. �ese compact
�ngerprints are used to e�ciently estimate similarity across multiple D shapes where di-
rectly evaluating similarity is expensive and impractical.

We demonstrate the utility of all our algorithms for a wide variety of geometry process-
ing applications on a range of scanned geometric models of varying sizes, complexity, and
details.
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1
Introduction

Inspiration is needed in geometry, just as much as in poetry.

— Alexander Pushkin

In the last decade, D geometry has emerged as an ubiquitous digital medium. It is now
easy to generate Dmodels—we can either acquire complex geometry of real world objects
using D scanners, or use state-of-the-art modeling tools to create complex geometric mod-
els. Accessibility of such techniques has resulted in a fast growing collection of D shapes.
Signi�cant e�ort is being devoted towards organizing and categorizing such large volume of
models. E�cient handling of such databases requires a notion of similarity score and e�ec-
tive methods for computing it. An useful notion of similarity should be invariant to initial
model poses, robust to perturbations, capable of handling articulations, and most impor-
tantly, work when the match is only partial. In this thesis, we investigate shape similarity
and use our understanding to solve various geometry processing problems including global
and local alignment of shapes, shape completion, shape analysis using symmetry detection,
and partial shape retrieval.

�e concept of shape similarity is not well de�ned, because similarity means di�erent
things for di�erent applications. �us it is unlikely that a single approach can handle all
shape matching problems. Even for other types of digital media like text, audio, images
partial similarity computation is an active area of research andmeaning of similarity changes
signi�cantly with applications. Our problem is signi�cantly more challenging, as digital D


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Figure .: �esis Outline. Multiple partial scans of an object is acquired using a laser scan-
ner. �e partial scans, in arbitrary starting poses, are pairwise globally aligned and further
processed using local re�nement. Scans with missing parts are consolidated and repaired
using geometric priors in the form of a shape database. Shape analysis generate higher level
understanding in the form of symmetry relations and compact probabilistic �ngerprints.
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models have no linear ordering, lack a canonical parameterization, and occur in arbitrary
initial poses.

Di�erent shape similarity measures have been proposed and investigated by researchers
in computer vision, computer graphics, and computational geometry. An extensive survey
of various similaritymeasures was presented byVeltkamp andHagedoorn in [VH]. Based
on the intended application, one can choose a suitable candidate from a large set of similarity
measures. However, there are some basic properties shared by all the popular measures.
Given two shapes P and Q, let D(P, Q) denote their distance with respect to the given poses.
Similarity is inversely related to the distance between the models. Since it is easy to switch
between distance and similarity, for the rest of the thesis we will take such liberty depending
on the context. When D is a metric, it satis�es the following:

• Identity: D(P, P) = 0.

• Symmetry: D(P, Q) = D(Q, P).

• Triangle Inequality: D(P, Q) + D(Q, R) ≥ D(P, R).

For partial similarity detection only the identity constraint is satis�ed. Inmany cases, having
a one-sided distancemeasure ismore desirable. Usually such a asymmetric distancemeasure
is a�ected by the extents of the parts of the object which do notmatch, and also by the regions
which are common to both objects.

Figure .: Laser Scanners. Model Shop Color D Scanner and high-resolution Desktop D
Model  in action.



 chapter . introduction

To de�ne a notion of distance invariant to initial model pose, we use infα D(P, α(Q))

where α denotes a rigid transform. Finally to handle partial matching, when Q is a part of
the model P, the distance measure should satisfy infα D(P, α(Q)) = 0.

Once we have a pair of shapes along with an associated shape similarity measure, it is
natural to seek algorithms for the following tasks:

• Find the rigid transform that best aligns the two objects.

• Decide if it is possible to align the two shapes such that the residual error is less than
a given threshold.

• Identify regions of the objects which are present in both the objects. Further, establish
correspondences between the common parts.

Using such basic primitives we can solve a variety of problems which, at a cursory glance,
look quite di�erent. In this thesis, we develop algorithms for shape alignment and registra-
tion, object improvement and completion, shape analysis, and compact shape signature.

Figure . shows our contributions to the various stages of the geometry processing
pipeline — for shape acquisition and for shape analysis. Following are brief descriptions
of the problems addressed in this thesis.

D scanners are popular devices for shape acquisition. Among the various acquisition
techniques, laser scanners are the most widely used. Figure . shows a few laser scanners
in action. In each phase of a multi-phase acquisition process, a scanner looks at an object
from some viewpoint and captures the observed geometric information. Multiple such scans
are then combined to create a complete model of the object – this is known as the registra-
tion or the alignment problem. Let us formalize this problem a little bit, starting with some
notations.

Assume that we have a notion of distance between a pair of objects in some given relative
orientation. �en the registration problem can be thought of searching over all possible
relative orientations of the two shapes to �nd the orientation that minimizes the distance
between them. �us given two shapes, the model P and the data Q, our goal is to �nd the
best rigid transform α that minimizes D(P, α(Q)). One can imagine computing the distance
D(P, α(Q)) for all possible rigid transforms α – let us call this the error landscape. Even for
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simple shapes, the error landscape o
en has multiple local minima (see Figure .). Clearly
any naive optimization on this landscape for computing the global minima can easily get
stuck at local minima.

An important question at this stage is how to estimate an aligning transform close to the
global minimum. In some cases, we can get such a transform using information about the
intermediatemotion of the scanner. However, this requires a reasonable calibration between
the scanner components. In situations when we do not have such a reliable starting guess,
we have to solve the registration problem globally without any assumption on the initial
poses. �e problem becomes easy when the data is a copy of the model. �is special case
is commonly referred to as the whole-to-whole matching problem. In such a scenario, we
can solve for the aligning translation by simply aligning the centroids of the corresponding
objects. Subsequently, we extract the rotational component as the transform that brings the
respective principal component axes of the two objects into alignment (see Figure .).

However, in most cases scans agree only in parts – commonly referred to as the partial
matching problem. Simple principal component based alignmentmethods are not useful for
partial matching (Figure .). In fact any other global descriptor based approach fails. �e
reason is that global properties of two objects sharing a common part can be quite di�erent.

Figure .: Error landscape. Plot of error landscape obtained by computing distance between
a model and a data surfaces. �e position of the model is kept �xed, while we rotate the data
about x and the y-axes indicated by angles α and β, respectively. �e global minima is at the
origin. In this example, the model and data are both the Stanford Bunny.
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model data
(a) Whole-to-whole matching

datamodel

(b) Partial matching

Figure .: Alignment using principal component axes. Translation vector is computed by
aligning the centroids of the objects. Rotational part is computed by aligning the respective
principal component axes of the shapes. While this approach works for whole-to-whole
matching, it fails in case of partial matching where the region of overlap is not known.

So we have to compute the aligning transform using a method which does not depend on
global characteristics of the shape but rather on the geometry of the common part. �e
problem becomes challenging as the common parts are not known in advance.

Luckily the low dimensionality of the space of rigid transforms comes to our rescue.
�eoretically, if we can correctly establish correspondence between just  points in a non-
degenerate con�guration across the model and data shapes, then we can uniquely solve for
the aligning rigid transform. In practice due to robustness and stability issues, we establish
correspondence between a few more than  points across the model and the data scans.

To this end, in chapter , our algorithm computes for each surface point a descriptor
based on local geometry that is robust to noise. A small number of feature points are auto-
matically selected from the data shape according to the uniqueness of the descriptor value
at the point. For each feature point on the data, we use the descriptor values of the model
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to �nd potential corresponding points in the data shape. We then develop a fast branch and
bound algorithm based on distance matrix comparisons to select the optimal correspon-
dence set. Once we have a set of corresponding point pairs we then use the information to
bring the two shapes into a coarse alignment.

Now we have the model and the data in rough initial alignment. Since we are close to
the global minima in the error landscape, a local optimization based approach re�nes the
solution towards a better alignment. In chapter , we formulate the problem of aligning
two scans as a minimization of the squared distance between the underlying surfaces. Local
quadratic approximants of the squared distance function are used to develop a linear system
whose solution gives the best aligning rigid transform for the given pair of point clouds.
�e rigid transform is applied and the linear system corresponding to the new orientation is
build. �is process is iterated until it converges. �e point-to-point and the point-to-plane
Iterated Closest Point (ICP) algorithms can be treated as special cases in this framework. We
analyze the convergence behavior of our algorithm and of point-to-point and point-to-plane
ICP under our proposed framework, and derive bounds on their rate of convergence.

Now given several scans, we apply our global and local alignment technique for scan
pairs to solve the multiple scan alignment problem using a technique proposed by Pulli
[Pul]. A
er stitching together many scans, we get a representation of the whole object.
Unfortunately in many cases we �nd regions with missing parts in the scanned result. At
this stage, we can either acquire more scans, or just use prior knowledge to plausibly �ll in
regions of missing parts.

In chapter , we present a novel approach for obtaining a complete and consistent D
model representation from incomplete surface scans, using a database of D shapes to pro-
vide geometric priors for regions of missing data. Our method retrieves suitable context
models from the database, warps the retrieved models to conform with the input data, and
consistently blends the warped models to obtain the �nal consolidated D shape. We de�ne
a shape matching penalty function and corresponding optimization scheme for computing
the non-rigid alignment of the contextmodels with the input data. �is allows a quantitative
evaluation and comparison of the quality of the shape extrapolation provided by eachmodel.
Our algorithm explicitly accommodates uncertain data and can thus be applied directly to
raw scanner output. �e information gained during the shape completion process is utilized
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for future scans, thus continuously simplifying the creation of complex D models.

Although D geometry can be captured using acquisition techniques as described, there
are applications where one wishes to create geometrical models for which physical replicas
does not exist. In such a scenario, one can model geometry starting from scratch using a
wide variety of commercially or publicly available tools. Another possibility is using such
modeling tools to edit and deform existing models to create novel shapes. In the end we
end up with shapes of varying size and details. Large collection of such acquired or created
shapes are easily available in several commercial and public repositories. We are interested
in gaining some high level understanding of these shapes. Towards this end we want to
estimate intra and inter object similarity. Detecting shape similarities is a key component
of many digital geometry processing algorithms such as shape clustering, automatic model
alignment, and model retrieval. Similarity measures are useful in answering questions like:
Are there repeated parts in the object? Is there partial symmetry in the object? Are multiple
objects simply articulated poses of the same shape? How to create a rough embedding of
models in a shape space?

In the second part of this thesis, we show how many such questions are e�ciently an-
swered using our understanding of shape similarity and techniques for shape alignment. For
example, detecting symmetries of an object is essentially solving the partial shape alignment
problem between two copies of the same object while ignoring the identity transform. Not
surprisingly, many of our techniques carry over from the �rst part of the thesis.

In chapter , we present a new algorithm that processes geometric models and e�ciently
discovers and extracts a compact representation of their Euclidean symmetries. �ese sym-
metries can be partial, approximate, or both. Our method is based onmatching simple local
shape signatures in pairs and using these matches to accumulate evidence for symmetries in
an appropriate transformation space. A clustering stage extracts potential signi�cant sym-
metries of the object, followed by a veri�cation step. Based on a statistical sampling analysis,
we provide theoretical guarantees on the success rate of our algorithm. �e extracted sym-
metry graph representation captures important high-level information about the structure
of a geometric model which in turn enables a large set of further processing operations, in-
cluding shape compression, segmentation, consistent editing, symmetrization, indexing for
retrieval, etc.
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As the �nal contribution of this thesis, in chapter , we probabilistically determine shape
similarity in almost constant time, independent of the resolution of the data. While the
drivingmotivation behind this work is e�cient shape database search, our tool is useful for a
variety of other geometry processing purposes. Our algorithm is simple, easily parallelizable,
and works on streaming data, making it a suitable candidate for massive shape database
processing.

Our framework is based on local shape signatures and is designed to allow for quick
pruning of dissimilar shapes, while guaranteeing not to miss any shape with signi�cant sim-
ilarities to the querymodel in shape database retrieval applications. Since directly evaluating
D similarity for large collections of signatures on shapes is expensive and impractical, we
propose a suitable but compact approximation based on probabilistic �ngerprints which are
computed from the shape signatures using Rabin’s hashing scheme and a small set of ran-
dom permutations. Our approach does not explicitly align the models to compute their
similarity. We provide a probabilistic analysis that shows that while the preprocessing time
depends on the complexity of the model, the �ngerprint size and hence the query time de-
pends only on the desired con�dence in our estimated similarity. Our method is robust to
noise, invariant to rigid transforms, handles articulated deformations, and e�ectively de-
tects partial matches. In addition, it provides important hints about correspondences across
shapes which can then signi�cantly bene�t other algorithms that explicitly align themodels.

1.1 Contributions

�e goal of this thesis is to understand and evaluate shape similarity for a variety of applica-
tions. �e proposed methods are not restricted to any particular shape representation and
solve a wide range of geometry processing problems including registration of scans, shape
completion, symmetry detection of shapes, shape database classi�cation, and feature point
identi�cation.

�e main contributions of this thesis are (see Figure .):

• A framework for global and local (partial) alignment of multiple shapes speci�ed in
arbitrary initial poses.
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• Scan completion of partial D scans using geometric priors from existing databases.

• Partial and approximate symmetry detection for D geometry.

• Probabilistic �ngerprints for shapes as a reliable and compact shape descriptor with
applications to a wide variety of geometry processing problems.



Part I

Shape Registration
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2
Global Registration

A poor relation is the most irrelevant thing in nature.

— Charles Lamb

�e problem of global registration is a fundamental problem in shape acquisition and
shape modeling. In this chapter we present an algorithm for the automatic rigid alignment
of two D shapes (data and model), without any assumptions about their initial positions.
Registration plays an important role in D model acquisition, object recognition, and ge-
ometry processing. �e algorithm �rst computes, for each shape, a set of robust feature
points based on local geometry. For each feature point in the model, we �nd a small set
of candidate points in the data using a range search in the feature space. Now to align the
data and the model shapes, we need to solve a combinatorial problem. We use a branch and
bound approach to search for the correspondences between the feature points across the data
and model shapes. Since a rigid transform preserves inter-point distance, we can evaluate
correspondence assignments by comparing distance matrices computed from the data and
model, respectively. Further, using a branch and bound approach involving distance matri-
ces we can evaluate all the possible correspondence assignment without having to explicitly
enumerate each of them. �us we avoid explicitly computing the aligning transforms while
solving the correspondence problem. Once we have the correspondence, we use it to get a
good initial rigid alignment for the models.


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It is part of most D shape acquisition pipelines, where self-occlusions and scanner lim-
itations usually require the acquisition of multiple partial scans. To build a complete model,
the partial scans need to be brought into a common coordinate system (Figure .), which
is usually done by pairwise registration. �is problem is particularly di�cult when no infor-
mation is available about the initial position of themodel and data shapes, the inputs contain
noise, and the shapes overlap only over parts of their extent. Also the regions of overlap are
not known in advance. While registration is a common problem in D scanning, model
alignment is also a popular pre-processing step for various geometry processing applica-
tions such as texture transfer, morphing, or watermarking [CWPG]. Before we describe
our approach for robust global registration [GMGP], let us study some of the existing
techniques.

2.1 RelatedWork

Solutions to the registration problem can be broadly divided into two general classes. One
class, known as voting methods, makes use of the fact that the rigid transform is low di-
mensional and exhaustively searches for the small number of parameters needed to specify
the optimal transform. Generalized Hough transform [HB], geometric hashing [WR],
and pose clustering [Sto] quantize the transformation space into a -dimensional table.
For each triplet of points in the model shape and each triplet in the data shape, the aligning
transformation between the triplets is computed and a vote is recorded in the corresponding
cell of the table. �e entry with themost votes gives the optimal aligning transform. Another
variant of this scheme, the alignment method [HU], tallies for each transform proposed
by two triplets of points howmany points of the data are brought by the transform close to a
point in the model. �e transform which brings the most data points within a threshold of a
point in the model is chosen as the optimal aligning transform. Voting methods are guaran-
teed to �nd the optimal alignment between the data and model shapes and are independent
of the initial pose of the input shapes. However, since these methods tend to be costly, they
are usually not used for global registration of scan data.

�e second class of approaches to the registration problem tries to solve the underlying
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correspondence problem: for each point on the data shape, the goal is to �nd its correspond-
ing point on the model. Given a set of corresponding point-pairs, a rigid transform can be
computed that best positions the two shapes so that the distance between corresponding
points is minimized [ELF]. When the initial positions of the model and data are close, the

Figure .: Scanning the David. Cyberware gantry being used to scan the statue of David.
�e image is courtesy of the Digital Michelangelo Project.
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correspondences and the transform are usually found using a variant of the Iterated Closest
Point algorithm (ICP) [BM, RL, MGPG]. �e algorithm assigns to each point in the
data its closest point in the model as a correspondence, computes the aligning transform,
and applies it to the data shape. �is process is iterated until some convergence criterion is

(a)

(b) (c)

Figure .: Automatic registration of range data. Top:  input scans (shown here in good
position for visualization, the actual input positions are arbitrary). Bottom le
: Registration
a
er applying our algorithm to overlapping pairs of scans. Bottom right: Registration a
er
applying ICP and error relaxation to the initial pose produced by our algorithm.
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reached. �e main limitation of ICP and its variants is that, as a local optimization method,
it is not guaranteed to �nd the globally optimal alignment, and therefore is only e�ective
when the initial position of the input shapes is close to the correct alignment [MGPG]. In
shape acquisition systems, the input scans are usually positioned manually, and then regis-
tered using ICP. �is approach was used in the Digital Michelangelo Project [LPC+].

Both the voting schemes and the correspondence search can be improved by using ge-
ometric descriptors. A geometric descriptor is a quantity computed for each point of the
model and the data, based on the shape of the local neighborhood around the point. Points
whose descriptors are similar potentially correspond. High-dimensional, or rich, descrip-
tors such as spin images [JH] and shape contexts [BMP] provide a fairly detailed de-
scription of the shape around each point in transformation-independent manner. �e ad-
vantage of rich descriptors is that given a point in the data shape, it is likely that only a few
points in themodel shapewill have a similar descriptor, and the pointwith the best-matching
descriptor is likely to be the correct corresponding point. Incorrect correspondences are few
and can be removed using outlier detectionmethods [FB], whichmeans that rich descrip-
tors can be used to directly solve the correspondence problem. Huber [HH] uses spin
images computed from subsampled input data for automatic global registration of range
data. Rich descriptors are particularly popular for object recognition and shape retrieval,
where the computation of descriptors can be amortized over large number of comparison
queries [BMP, FMK+].

Low-dimensional descriptors, on the other hand, usually compute only a few values per
point. Examples of such descriptors include curvature and various curvature-based quanti-
ties such as shape index [Koe] and curvedness [KD]. Low-dimensional descriptors are
typically much easier to compute, store, and compare than high-dimensional rich descrip-
tors. However, for a given point in the data shape, there may be many points in the model
shape with the same descriptor value. �erefore, low-dimensional descriptors are usually
used in conjunction with a voting scheme [BS] to reduce the size of the search space or
with an iterative alignment scheme to improve the funnel of convergence (set of starting
positions which result in correct alignment) [SLW, GLB].
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Since the inputs to the registration algorithm are usually large, a common speedup tech-
nique is to pick a set of feature points on the model and data based on the computed de-
scriptor values [MKY]. �e registration is then performed only with respect to the feature
points, which results in signi�cant reduction of the size of the search space. Feature extrac-
tion methods, however, can su�er from the problem of picking inconsistent points on the
model and data, since the two shapes are processed separately. �e resulting set of feature
points, therefore, may not have a good alignment. Because of possible errors in feature selec-
tion, correspondence assignment techniques based on geometric descriptors usually build
large correspondence sets to increase robustness to incorrect features and pairings. �ere-
fore, these methods, unlike the voting schemes, do not make use of the low-dimensionality
of the aligning rigid transform.

Contributions

In this work, we develop a new global registration algorithm, based on robust feature iden-
ti�cation and correspondence search using geometric descriptors. �e main contributions
of our method are as follows:

• Our algorithmmakes use of the fact that the aligning transform is low-dimensional to
robustly �nd a small set of matching point-pairs that specify the optimal alignment.

• We focus on identifying a small number of feature points on the data shape, and then
searching the entiremodel shape for correspondences. �is approach avoids the prob-
lem of selecting incompatible features that is common in other feature-based registra-
tion methods.

• Weuse a novel shape descriptor based on an integral operator on the underlying shape,
for identifying features in the data and selecting potential correspondence points in
the model. Unlike the more common curvature based descriptors that use di�eren-
tial operators, integral descriptor does not su�er from instability issues. Our feature
selection algorithm picks points on the data shape which have uncommon descriptor
values across a range of scales.
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• For each feature point, the correspondence search algorithmexamines the entiremodel
shape to identify the optimal corresponding point. �e search is made e�cient by us-
ing a measure of quality of correspondences based on computing only intrinsic quan-
tities of the model and data shapes. �is allows us to avoid computing an aligning
transformation, and results in an e�cient branch-and-bound algorithm. Addition-
ally, we use the rigid transform constraints for e�cient pruning of the search space.

• Since our algorithm only uses descriptor values, which are invariant under rigid trans-
forms, and intrinsic geometric properties of the input shapes, we are able to align the
model and data shapes without any assumptions about their initial position. �e pose
produced by our algorithm is further re�ned by ICP, producing an automatic global
registration pipeline.

2.2 Integral Volume Descriptor

Let P be the input shape, consisting of N points p1 . . . pN . �e input can be speci�ed as a
mesh or as a point cloud. An m-dimensional geometric descriptor is a function that assigns
to each point p ∈ P a vector f (p) ∈ Rm. To be useful in registration algorithms, a descriptor
should be invariant under rigid transformations, robust to noise, and based on local geom-
etry around p (since the input shapes may be only partially overlapping). We will restrict
our attention to low-dimensional descriptors, since they are cheaper to compute, store, and
compare than rich descriptors.

Most of the common low-dimensional shape descriptors are based on di�erential quan-
tities of the shape, since they are invariant under rigid transformations. �emain limitation
of di�erential descriptors, which has made them unpopular in registration algorithms, is
that any noise present in the input gets ampli�ed when derivatives are computed. As a re-
sult, algorithms that rely on di�erential descriptors need to perform careful smoothing of
both data and model shapes.

An alternative approach, that has yielded promising results in object recognition and
feature classi�cation, is to use local shape invariants that are based on integration instead
of di�erentiation [MHYS, CRT]. Integral descriptors retain the desirable properties
of di�erential invariants such as locality and invariance under rigid transformations, but
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are more robust to noise. Manay et al. [MHYS] showed that integral invariants have de-
scriptive power comparable to curvature-based descriptors, but are more e�ective in D
object recognition in the presence of noise. In this section, we extend the integral invariants
of [MHYS] to D.

2.2.1 Definition of Descriptor

We develop a D integral invariant, called the integral volume descriptor. �is invariant is
de�ned at each vertex p of the input shape as follows,

Vr(p) =
∫

Br(p)∩S
dx. (.)

Here the integration kernel Br(p) is a ball of radius r centered at the point p, and S is the
interior of the surface represented by P. �e quantity Vr(p) is the volume of the intersection
of the ball Br(p) with the interior of the object de�ned by the input mesh. �e invariant is
illustrated in D in Figure .(a).

�e reader is referred to [Gel] for a detailed description of properties of integral de-
scriptors and how to evaluate them.

r p

Vr(p)

(p)Br

(a)

r p

Vr(p)

(p)Br

(b)

Figure .: Illustration of the volume integral descriptor in D. (a) We take the intersection
of a ball of radius r centered at point p with the interior of the surface. (b) Discretization of
the volume descriptor as computed by our algorithm. �e cell size of the grid is ρ.
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2.3 Feature Point Selection

Our registration algorithm is based on �nding correspondences in the model Q for a small
number of feature points picked from the data shape P. �e features are selected in a way
that makes the search for correspondences particularly simple. �e key property of our
feature selection algorithm is that feature points should come from regions with relatively
rare descriptor values. Since the data andmodel shapes are similar over thematching region,
and we use descriptor values to select potential corresponding points in the model for each
feature point in the data, points with relatively rare descriptor values are likely to have only
a few potential correspondence points. �us, our feature selection algorithm speci�cally
picks points such that the resulting search for correspondences will be fast. Additionally, we
do not need to select many points as features, since a rigid transform can be speci�ed using
only a small number of points. Selecting a small number of feature points, such that eachwill
have only a small number of potential correspondences results in a tractable correspondence
search problem.

We �rst brie�y describe an algorithm for a general descriptor, and then use a scale-space
representation of the volume descriptor togetherwith persistence [CZCG] acrossmultiple
scales to robustly select feature points.

2.3.1 Basic Algorithm

Let f be the geometric descriptor which associates with each point pi a value f (pi). �e
descriptor can be of any dimension, in this section we assume that the descriptors are one-
dimensional f (pi) ∈ R. A point p is de�ned to be a feature if its descriptor value is rare
among all descriptors computed for the data shape P. �e feature point selection proceeds
as follows:

. Compute a histogram of descriptor values, f (pi) for all points in P. �e number of
bins b in the histogram is computed using Scott’s rule, b = 3.49σf N−

1
3 , where σf is the

standard deviation of the N descriptor values [Sco].

. To select feature points, we identify the k least populated bins such that the total num-
ber of points in these bins is smaller than somemaximum threshold s. �e points that
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belong to these bins are the potential features. Intuitively, features are those points
which are dissimilar from the rest of the shape, which is captured by the low occur-
rence of their descriptor values. �e parameter s controls the tradeo� between accu-
racy of the transform (more correspondences) and running time of the algorithm. In
our implementation, we set s = 0.01N.

. Since nearby points are likely to belong to the same feature, we want to prevent the al-
gorithm from picking points that are too close to each other. We also want the points
to cover the whole shape since in case of partial matching we do not know a priori
which part of the data shape will overlap with the model. When a point pi is picked,
we mark all points that fall into a ball of radius Re around pi as unavailable for se-
lection. Enforcing the minimal separation distance between the feature points also
results is more stable con�gurations in the correspondence search stage of the algo-
rithm (Section .).

Notice that this process is not invariant to the order of points in P. �is means that
it cannot be used to pick canonical points on the data and model shapes. As mentioned
before, we do not rely on feature points being canonical, sincewewill search the entiremodel
shape for correspondences, instead of trying to match up canonical points. �is means, as
long as a feature point lies in the overlap region between the model and data, it will have a
correspondence assigned to it by the matching stage of our registration algorithm.

�e above algorithm works with any kind of descriptor which can be represented as
a vector in Rm. Since we are picking as features those points of P that have uncommon
descriptor values, we need a descriptor that is robust to noise, making integral descriptors
particularly well suited for this kind of approach. Figure .(b) shows the feature points
selected on the dragon model corrupted with zero-mean Gaussian noise.

Although volume descriptors are robust to noise, they can still label spurious points as
features due to presence of outliers. For this reason, to make our algorithm more robust,
we compute descriptors at varying scales by changing the radius r of the neighborhood ball.
For more discussion on scale-space selection please refer to [Gel].

�e result of the feature selection stage is a set of feature points P′ selected from the data
shape. For each feature, we are given the coordinates of the point, scale-space representation
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of the volume descriptor, and the range of radii forwhich this pointwas classi�ed as a feature.
We now develop an algorithm that �nds, for each feature point on the data, a corresponding
point on the model.

2.4 DistanceMetrics

Given a set of n feature points P′ selected from data shape P, the goal of the correspondence
search algorithm is to �nd, for each pi ∈ P′, a point qi ∈ Q, that is the bestmatch to pi. Let P′

and Q′ be two sets of points with correspondences given as (pi, qi). We present two ways of
evaluating the quality of the correspondence based on the coordinates of the points (pi, qi).

�e standard measure of distance between two point sets with known correspondences
is the coordinate root mean squared error, or cRMS. �is error measures how close each
point pi comes to each corresponding point qi a
er an optimal rigid aligning transform is
computed for the entire set of corresponding points.

cRMS2(P′, Q′) = min
R,t

1
n

n

∑
i=1
||Rpi + t− qi||2, (.)

where R is a rotation matrix and t is a translation vector. �e optimal aligning rigid trans-
formation needs to be computed before the error can be evaluated, which can be done using
one of the methods described in [ELF]. �e cRMS distance metric is the most frequently
used measure of residual error in registration algorithms.

An alternative metric of distance between two point sets with known correspondences
is the distance root mean squared error, or dRMS. �is metric is commonly used in compu-
tational molecular biology for comparing the similarity of two protein shapes [Koe]. �e
dRMS error is computed by comparing all internal pairwise distances of the two point sets,
and is de�ned as

dRMS2(P′, Q′) =
1
n2

n

∑
i=1

n

∑
j=1

(||pi − pj|| − ||qi − qj||)2. (.)

�e triangle inequality and the property that the optimal transform aligns the centroids



 chapter . global registration

of P′ and Q′ allows us to upper bound dRMS using cRMS as follows,

dRMS(P′, Q′) ≤
√

2 cRMS(P′, Q′). (.)

To compute a lower bound, we need to examine both Q′ and its re�ection around any
arbitrary plane Q′ (since dRMS is invariant under re�ection, but cRMS is not). �e lower
bound can be shown to be

1
k
√

n
min(cRMS(P′, Q′), cRMS(P′, Q′)) ≤ dRMS(P′, Q′). (.)

Here n is the number of corresponding point pairs and k is a constant, depending on ratio
of the diameter of the data shape to the feature exclusion radius used in Section .. �ese
bounds mean than when the dRMS of two point sets is small, their cRMS will also be small
(when there is no re�ection), indicating that the point sets are in good alignment. �erefore,
we can use dRMS instead of cRMS to evaluate how well two point sets correspond.

�e advantage of dRMS is it does not require computation of the aligning transform
before the quality of the correspondence can be evaluated. It is, in fact, only comparing
intrinsic properties of the two sets of corresponding points, namely the internal pairwise
distances of each pointset, as opposed to comparing the distances between the two point
sets. �is means that, given the set of feature points P′, its pairwise distance matrix needs to
be computed only once, and then compared to pairwise distance matrices of the potential
correspondence sets Q′. Additionally, since only intrinsic properties of the point sets are ex-
amined in dRMS computation, we will be able to e�ciently prune correspondence sets that
contain wrong matches without having to compare the entire sets P′ and Q′. �is will allow
us to develop an e�cient branch-and-bound algorithm, as described in the next section.

2.5 Correspondence Search

�e algorithm presented on this section was joint designed with Natasha Gelfand. �ese
ideas were born and shaped as a result of our many long discussions. Please refer to her
thesis [Gel] for additional comments.
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2.5.1 Computing Potential Correspondences

Let P′ be the set of n points picked by the feature selection algorithm. For each feature point
pi we also have the scale-space representation of the volumedescriptor (Vr1(pi), . . . , Vrk(pi)),
and the values ri

a, ri
b, which are the minimum and maximum radii of the kernel of the vol-

ume descriptor for which pi is a persistent feature. We nowuse the descriptor values to select
potential corresponding points in the model shape Q for each feature point.

For our descriptor-based matching algorithm, we �rst compute the same scale-space
representation of the volume descriptor on the model shape. �at is, we compute volume
descriptors for radii r1, r2, . . . , rk for each point on the model shape. Let p be a feature point
selected from the data shape, and let rb be the largest feature radius. We perform a range
query [AMN+] in the model, and select all points q such that |Vrb(p) − Vrb(q)| < ε.
We can also perform the range query for any radius between ra and rb of p, however we
prefer the largest possible radius since it gives the most stable descriptor. �e variation of
the descriptor values ε can be related to the grid size ρ and the radius of the volumedescriptor
r as ε ≈ 0.75ρ/r. �is accounts for the variation in the value of the volume descriptor due
to discretization using the voxel grid. We pick ρ to be large enough to account for noise in
the data.

�e range query results in the set of points Cinitial(p) whose volume descriptor for the
given radius is similar to the descriptor value at p. Similar to the approach in the feature
selection algorithm, we want to pick a set of points that represent distinct areas of themodel.
We cluster all points in Cinitial(p) into clusters of radius Rc and pick from each cluster the
point q that minimizes |Vrb(p)−Vrb(q)|. �is gives the �nal set of correspondences for p,
C(p). We repeat this procedure for each point in the feature set.

Using a range search instead of exact match of the descriptor values makes it more likely
that the correct correspondence of p is included in the set Cinitial(p) (under a reasonable
noise model). A
er clustering, we are guaranteed that the correct correspondence is within
Rc of a point inC(p). It follows that the correct set of corresponding points of P′ has cRMS at
most Rc, and dRMS is bounded by

√
2Rc. �e value of Rc, therefore, is a knob that controls

the quality of the resulting registration.
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2.5.2 Matching Algorithm

Even thoughwe have a comparatively small number of feature points, and each feature point
has a small number of potential correspondences, exhaustive exploration of the space of all
correspondences can still be prohibitively expensive. �e key observation that will allow us
to develop a fast algorithm is thatwe canuse the rigidity constraints of the aligning transform
to e�ciently eliminate a large set of potential correspondences.

Given a set of feature points P′ = (p1, . . . , pn) selected from the data shape, and a set of
potential correspondences for each point in the model shape (C(p1), . . . , C(pn)), we want
to select a set of points Q′ such that qi ∈ C(pi) and the error metric of Equation . is
minimized over all sets of such correspondences. Since we will only be considering points
in Q that belong to some potential correspondence set, we will change the notation slightly
in this section to simplify the explanation of the algorithm. Given a feature point pi, we will
designate the j-th member of the potential correspondence set C(pi) as qj

i .
Consider a pair of feature points (pi, pj). According to their descriptor values, any pair

of points (qk
i , ql

j) can be used as corresponding points. Rigid transform constraints tell us
that the distance between pi and pj needs to be the same as the distance between their cor-
respondences in the model. Since we are using correspondences that are only approximate
within the clustering radius Rc, the correspondence pairs need to satisfy the relationship

∣∣∣||pi − pj|| − ||qk
i − ql

j||
∣∣∣ < 2Rc. (.)

We apply this thresholding rule in a branch-and-bound algorithm for �nding the best set of
correspondences. Let Q′ = (q∗1 , . . . , q∗n) be the current best set of correspondences for the
set of feature points P′, and let Emin = dRMS(P′, Q′) be the error of the current best corre-
spondence set. We initialize the set of correspondences using a greedy algorithm described
in Section ... �e branch-and-bound correspondence search proceeds as follows:

. Assume corresponding points have been assigned for the �rst k − 1 feature points,
which gives us a partial correspondence set (qc1

1 , . . . , qck−1
k−1 ). We are looking for the

correspondence for the k-th feature point.

. �reshold: For each potential correspondence of pk, apply the thresholding test of
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Equation . with respect to all previously selected points. �at is we verify that Equa-
tion . holds for all pairs (pi, pk), (qci

i , qj
k) for i = 1, . . . , k− 1. If one of the tests fails,

we can prune the branch that includes the correspondence pair (pk, qj
k).

. Prune: For each qj
k that passes the thresholding test, form the partial correspondence

(qc1
1 , . . . , qck−1

k−1 , qj
k) and evaluate the dRMS error of this partial correspondence. If the

partial error is greater than the error of the current best estimate Emin, discard qj
k as a

correspondence.

. Branch: For each of the remaining qj
k that pass both the thresholding and the pruning

tests, assign ck = j, and recursively invoke Step . Once all correspondences for pk

have been examined, we backtrack and assign the next correspondence to the previous
point pk−1.

. Bound: If all feature points have been assigned correspondences, compute the er-
ror of the match E. If the dRMS error is less than Emin, we potentially have a better
correspondence set, and a new bound, unless the current assignment is actually a re-
�ection. We can rule out re�ection by making sure the cRMS error of the current
correspondence set is also small. If the cRMS error check passes, we assign Emin = E

and Q′ = (qc1
1 , . . . , qcn

n ).

�e branch-and-bound algorithm is possible because we are using the dRMS error met-
ric, which can be computed for partial correspondences without the need for the optimal
aligning transform. �e only time when the aligning transform in computed is in the last
step, and only if we need to update the bound.

2.5.3 Greedy Bound

�e initial correspondence and error bound is established using a hierarchical greedy algo-
rithm. �e algorithm �rst �nds the best correspondences for each pair of feature points.
�en it combines the pairs to form best corresponding sets of four points, then combines
fours into eights and so on.

. Form pairs: For each pair of feature points (pi, pj) ∈ P′, choose the best pair of cor-
responding points (qk

i , ql
j) in their associated potential correspondence sets. �e best
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matching pair of correspondences is one that minimizes the distance metric penalty∣∣∣||pi − pj|| − ||qk
i − ql

j||
∣∣∣. �is gives us the set E2 ofO(n2) two-point correspondences.

We sort E2 in order of increasing distance discrepancy.

. Combine pairs: Combine two-point correspondences into four-point correspon-
dences. Given a two-point correspondence e ∈ E2, �nd the two-point correspondence
in E2 that does not contain any of the points of e, and that minimizes the dRMS error
of the resulting four-point correspondence. Remove from E2 all correspondences that
have the same endpoints as the new four-point correspondence, and continue until
the set E2 becomes empty. Call this set E4, and again sort it by increasing dRMS error.

. Build hierarchy: We continue merging in this manner, merging pairs of elements of
a set Ek to form the set E2k. We typically stop at either E8 or E16.

. Assign the rest of the points: We pick the correspondence from the resulting set Ek

that has the smallest dRMS error. We use this partial ( or  point) correspondence
to compute the rigid transform (R, t) that minimizes the cRMS error (Equation .)
and apply it to the entire feature point set P′. For all points in pi ∈ P′ that do not yet
have correspondences, we assign the point qj

i ∈ C(pi) that is closest to R(pi) + t. We
use this as the initial correspondence (P′, Q′) and initialize Emin to dRMS(P′, Q′) in
the algorithm described in Section ...

�is approach is greedy because each step picks the best correspondences to merge together
and never backtracks. �erefore is it possible that an incorrect correspondence is found
for P′. However, as long as some points are matched to their correct corresponding points
in Step , the algorithm tends to produce a tight bound that greatly speeds up the basic
branch-and-bound algorithm. In practice, this approach o
en results in a very good guess
of the correct alignment, resulting in e�ective pruning in the branch-and-bound algorithm.

2.5.4 Partial Matching

When the model and data shapes overlap only over part of their extent, not all the feature
points picked on the data will have corresponding points in themodel. �erefore, wemodify
our matching algorithm to handle such partial matches.
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In addition to performing the search over all correspondences, we also need to �nd the
subset of the feature points that are the same in the model and data. We augment the set
of potential correspondences for each point, C(pi), with the not present value ∅. When a
point is assigned ∅ as a correspondence, it does not contribute to the computed dRMS error.
We want to maximize the number of feature points that get assigned a valid corresponding
point in the model, while still keeping the dRMS error of the correspondence set low.

Suppose we know that k feature points are missing from the model, but do not know
which k. We can run our correspondence search algorithm, but prune away any branch
that has more than k points assigned the ∅ correspondence. �is will select the best n− k

feature points that have the best correspondences. Since we do not know k, we can run
the same algorithm for k ranging from 0 to n − 3 (since only three points are needed to
specify a rigid transform). For robustness, we actually require at least  points to have a
valid correspondence. We can detect the maximum k since the error will sharply decrease
once n− k reaches the correct number of common feature points. Figure .(d) shows the
dRMS error vs. the number of matched feature points for the David model.

2.6 Results

2.6.1 Object Registration

We applied our algorithm to a number of registration problems. Although in the examples
the model and data shapes are shown in similar positions, the reader should keep in mind
that our algorithm does not depend on any assumptions about the initial positions of the in-
put shapes, and the input shapes were given to our algorithm in arbitrary positions. Timing
results for the experiments are given in Figure ..

In the �rst example, we use the algorithm for whole object alignment in the presence
of signi�cant noise. We align the dragon model to a copy of itself corrupted by zero-mean
Gaussian noise. Figure . shows the results. Our alignment brings the data (noisy) shape
close enough to the model (smooth) shape that applying one iteration of standard ICP with
point-point error metric [RL] brings the shapes into exact alignment.

Figure . shows the results of applying our algorithm to register partially overlapping
range data. We take two raw scans of theDavid’s face, subsample them, and convert to amesh
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representation. We do not perform any other smoothing or surface reconstruction. �e
scans are given in arbitrary initial positions (scanner coordinates) and brought into close
alignment by our algorithm. �e pose computed by our algorithm is re�ned by running
three iterations of ICP. Fi
een feature points were picked on the data shape, eight of which
were assigned correspondences and used to compute the alignment.

Finally, we use our algorithm to build a complete model out of constituent range scans.
Given as input ten range scans of the Stanford bunny taken from di�erent view points, we
bring all scans to a common coordinate frame using our algorithm. �e rough alignment
accumulates errors since we align each scan only to one other, and do not perform any bun-
dle adjustment. However, the scans are now close enough to re�ne the pairwise matches
using ICP, and di�use the accumulated error over all scans using an error relaxation algo-
rithm proposed by Pulli [Pul]. �is gives us a completely automatic model construction

0.02

0.92

(a) (b)

(c)

Figure .: Dragon example. (a) Input to the matching algorithm: Smooth dragon (the
model) and noisy dragon (the data) with descriptor values shown at each point. Even under
noise the descriptor values at feature points look similar. (b) Feature points picked on the
data shape. (c) Top: Registration a
er applying our algorithm. Bottom: Registration a
er
re�nement by ICP.
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model selection num corr num
size time features time corr

Dragon , .  . 
David , .  . 
Bunny , .  . 
Part , .  . 
Hinge , .  . 

Table .: Timing Chart. Input size, running time (in sec), and number of feature points for
the registration experiments. In all cases the model size and data size are similar, so we only
give the size of the model. �e feature selection time includes descriptor computation for
both data and model. We also indicate the number of selected feature points and average
number of potential correspondences (|C(p)|) for each point.

pipeline. �e result is shown in Figure ..

2.6.2 Symmetry Detection

Our registration algorithm can be trivially extended to detect symmetry in objects bymatch-
ing an object to a copy of itself. Instead of returning the best matching orientation, we return
all matches with small error. Since the feature points picked by our algorithm are spaced far
apart, the di�erence between the symmetry con�gurations and other matches will be large.
Figure . shows the results of detecting symmetries of a mechanical part. Notice that the
graph of error in Figure . shows eight con�gurations with small error, which corresponds
to the eight-way symmetry of the model. Later in Chapter , we describe an algorithm for
detecting partial and approximate symmetries in D geometry.

2.6.3 ArticulatedMatching

Our global registration algorithm can be used to discover rigid parts in objects that undergo
articulated deformation. In this case, P and Q are two positions of the object. We want to
decompose the shape P into the minimum set of parts P1 . . . Pk, such that each Pi can be
aligned to a part of Q using a rigid transform. Here, we present a simple proof of concept
implementation.

We perform articulated decomposition by partial matching of P and Q. �is gives the
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(a) (b)

(c)

3 4 5 6 7 8 9 10 11
0

5

10

15

20

25

30

35

40

45

Number of Matched Feature Points

dR
M

S 
Er

ro
r

(d)

Figure .: David example. (a) Two scans of the David’s face. Feature points picked on the
data shape are shown in red.(b) Registration a
er applying our algorithm. (c) Registration
a
er re�nement by ICP. Points actually used to compute alignment in (b) are shown in red.
(d) Graph of dRMS error as the function of the number of matched features. Notice the
signi�cant increase in error for more than  points, which is the correct number of common
features.

transform R1, t1. We apply the transform to the data shape, and classify all points of the data
that fall within a threshold of the model as belonging to component P1. We then separate P1

and the corresponding Q1 from the input shapes and repeat the partial matching algorithm
with P− P1 and Q−Q1. We repeat the process until the size of the residual set becomes too
small. Figure . shows the result of segmenting a shape into rigid components using this
algorithm.

�e features picked on the data shape in Figure . also point one of the advantages
of the non-canonical nature of our feature selection and correspondence search. If a linear
feature is present in the input, such as the long edge of the hingemodel, our feature selection
algorithmdiscretely samples the edge at intervals given by the exclusion radius Re. If wewere
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Figure .: Symmetry detection using registration. (a) Feature points picked by our algorithm,
when the shape is aligned to a copy of itself. (b) Graph of the error for di�erent correspon-
dence sets. �e eight correspondences with small error indicate the eight-way symmetry of
the shape.

picking and matching features on both data and model shapes, this discrete sampling could
potentially result in two sets of points which do not match each other. However, since we
only pick features on one shape, the data, and then search the entire model, we always �nd
a compatible set of points (to within the error given by the clustering radius Ec) with which
to align the features.

(a) (b)

Figure .: Simple articulated matching. (a) Two input positions of the shape. Feature points
picked by our algorithmare shown in red. (b)Using repeated partialmatching, the algorithm
discovers two rigid components.
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2.7 Summary

In this chapter, we presented a global registration algorithm that aligns two D shapes with-
out any assumptions about their initial positions. Our algorithm is able to align whole and
partially overlapping shapes, and is robust to noisy data. �e algorithm works well in the
presence of strong point-like features in the input data.

However, if the input shapes do not have strong sharp features in regions of overlap, the
correspondence search space examined by the algorithm becomes quite large. As a result of
such a combinatorial explosion our algorithm becomes impractical. Later in chapter  we
present a randomized scheme to e�ciently handle such cases.



3
Local Registration

�e shortest distance between two points is under construction.

— Leo Aikman

In this chapter, we describe the second part of our registration algorithm. Global regis-
tration gets the input shapes in rough initial alignment, and now our goal is to further re�ne
their positions. �e main intuition behind our approach is once we are near the solution in
the error landscape (Figure .), we can perform an optimization to descend to the global
minimum, the rigid transform that aligns the shapes with the minimum residual error. Al-
though in this chapter we use point clouds as our modeling primitive, our method extends
easily to other representations. Before we discuss the details of our method [MGPG], let
us take a look at some of existing methods for local shape alignment.

3.1 RelatedWork

A popular method for aligning two point clouds is the Iterated Closest Point (ICP) algo-
rithm [BM, CM]. �is algorithm starts with two point clouds and an estimate of the
aligning rigid body transform. It then iteratively re�nes the transform by alternating the
steps of choosing corresponding points across the point clouds, and �nding the best ro-
tation and translation that minimizes an error metric based on the distance between the
corresponding points.


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Despite a large amount of work on registration, convergence behavior of many regis-
tration algorithms, under di�erent starting conditions, and error metrics, limited work has
been done towards theoretical analysis of the algorithm [ESE]. Experimentally, it has been
shown that the rate of convergence of ICP heavily depends on the choice of the correspond-
ing point-pairs, and the distance function that is being minimized [RL]. Many enhance-
ments of ICP-style algorithms for registration propose di�erent error metrics, and point
selection strategies, to improve ICP’s convergence behavior [GIRL, Fit, JH, CLSB,
RL].

Two distance metrics are commonly used in ICP and its variants. �e point-to-point dis-
tance of Besl [BM] uses the Eucledian distance between the corresponding points. �is
leads to an ICP algorithm that converges slowly for certain types of input data and initial po-
sitions. Another error metric is the point-to-plane distance of Chen and Medioni [CM],
which uses the distance between a point and a planar approximation of the surface at the cor-
responding point. When the initial position of the data is close to the model, and when the
input has relatively low noise, ICP with point-to-plane error metric has faster convergence
than the point-to-point version. However, when the shapes start far away from each other, or
for noisy point clouds, point-to-plane ICP tends to oscillate and fails to converge [GIRL].

Another reason behind the slow convergence of registration algorithms based on ICP,
is the local nature of the minimization. �e only information used by the algorithm is the
point correspondences. As a result, the minimized error function only approximates the
squared distance between the two point clouds up to �rst order.

In this chapter, we propose an optimization framework for studying registration algo-
rithms. We pose registration between two point clouds as an optimization over the space of
rigid transforms. We develop an objective function that is a second order approximant to
the squared distance between the model and the data. Higher order information about the
surfaces represented by the point clouds, such as local curvatures, are incorporated into this
quadratic approximant. Using such approximant to the squared distance function, we de-
velop a registration algorithm. When the model and the data PCDs are close, our algorithm
has a rate of convergence similar to ICP with point-to-plane error metric. Moreover, our
method has a stable behavior even when the initial displacement is large. We also explain
the convergence properties of the point-to-point and point-to-plane ICP variants, in terms
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of the accuracy of the distance function that they use during minimization.

3.2 Registration of Point Cloud Data

Let P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qm} be two point clouds in Rd. �e goal of
the registration algorithm is to �nd a rigid body transform α composed of a rotation matrix
R and a translation vector t that best aligns the data PCD Q to match the model PCD P.

Registration algorithms based on ICP work as follows. Given the initial position of the
data with respect to the model, the algorithm chooses a set of k point pairs (pi, qi) from
the model and the data. �e distance between the model and data PCDs is approximated
by the sum of distances between the point pairs. �e algorithm then searches for the rigid
transform that minimizes the residual distance, ε, between the model and the transformed
data:

ε(α) =
k

∑
i=1

d2(α(qi), pi), (.)

where d can be point-to-point distance of Besl and McKay [BM] or point-to-plane dis-
tance of Chen and Medioni [CM]. Notice, however, that the basic assumption is that the
sum of squared distances between pairs of points is a good approximation for the distance
between two PCDs.

In the point cloud setting, we actually know that the model and data PCDs are not ar-
bitrary collections of points, but are sampled from some underlying surfaces ΦP and ΦQ.
In this case, it is more appropriate to minimize the distance from the data PCD to the sur-
face represented by the model PCD. Pottmann and Hofer showed that when the data and
the model are close, the point-to-plane distance is a good approximation to the distance be-
tween a data point and the surface represented by the model PCD. On the other hand, when
the model and the data are far apart, the point-to-point distance is a better choice [PLH].

�e goodness of a given error metric is determined by two properties. First, we would
like the error metric to accurately re�ect the distance between a data point q and the surface
represented by the model PCD. Second, we would like the distance approximation to be
valid not just at a point q, but in a neighborhood around it. Both point-to-point and point-
to-plane error metrics are based only on �rst order information about the underlying input
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surfaces. As a result, they do not provide a good approximation to the distance when we
move around in the neighborhood of a data point q.

In this chapter, we are concerned with developing a good approximation to the distance
function between two point clouds. In order to show theoretical bounds on the convergence
behavior of registration algorithms based on our distance function, we pose the problem of
registration of two point clouds as an optimization problem over the space of rigid trans-
forms. �is leads to the following optimization problem: we are searching for the best rigid
transform α = (R, t) that minimizes the error given by

ε(α) =
m

∑
i=1

d2(Rqi + t, ΦP), (.)

where R is the rotation matrix and t is the translation vector. �e function d2(Rqi + t, ΦP)

is the distance from the transformed data point qi to the surface represented by the PCD P.
Given the optimization problem of Equation ., it is clear that the convergence behavior
of any such optimization procedure depends on the accuracy of the function d2. We call
d2 the squared distance function to the surface ΦP. Since the surface ΦP from which the
point model was sampled is generally complicated and unknown, a good approximant to
the squared distance function is required.

Contributions

We develop a quadratic approximant to the squared distance function to the surface repre-
sented by a point cloud, and use this approximant in a registration algorithm. Our approxi-
mant has the desired property of being valid not only at the query pointwhere it is computed,
but also in a neighborhood around the query point. �is property allows us to pose the reg-
istration problem in an optimization framework, and usemethods such asNewton iteration,
that depend on computing accurate derivatives of the objective function. In our optimiza-
tion framework using the squared distance function, point-to-point and point-to-plane ICP
variants are reduced to two special cases of the general minimization problem.

Our distance function approximates the squared distance from a data query point to the
surface represented by the model PCD up to second order. We develop two methods for
computing such local quadratic approximants. �e �rst, uses local curvature of the surface
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to incorporate second order information into the squared distance function. �e second
method, approximates the global error landscape by locally �tting quadric patches to the
squared distance function to the surface. �e quadric patches are stored in a special oc-
tree like structure called the dtree [LPZ]. For any point q, the registration algorithm
queries this special structure for the corresponding approximant to the squared distance to
the surface. Unlike common ICP variants, the dtree data structure allows us to perform
registration without explicitly using nearest neighbors for correspondence.

Both of the above techniques incorporate information about the shape of the neighbor-
hoods of the input surface into the error function. As a result we get better convergence
behavior than purely local methods of ICP. Using our distance function, we develop a reg-
istration algorithm for point clouds that has fast convergence and is more stable behavior
than standard ICP variants. When two point clouds are close to each other, our algorithm
has quadratic convergence, similar to point-to-plane ICP. However, unlike point-to-plane
ICP, our algorithm has more stable convergence behavior and is less prone to oscillations
when the initial distance between the model and the data is large.

3.3 Registration using the squared distance function

In this section, we assume the existence of a function d2 that for any point x ∈ Rd, gives the
squared distance to the model PCD surface ΦP. Such a squared distance function de�nes
the error landscape for our objective function as indicated by Equation .. So this function
d2 is important for registration algorithms. Later in Section ., we describe how to generate
local quadratic approximants F+ of this function d2(x, ΦP). Assuming these approximants
are available, we now show how the registration problem can be solved in a least squared
sense by a gradient descent search. Simply put, we try to place one point cloud in the squared
distance �eld of the other, in order to minimize the placement error. Given ΦP, we expect
the points near its medial axis MA(ΦP) to have bad quadratic approximants, since locally,
the squared distance function is not smooth. If we detect such points, we leave them out of
our optimization procedure.

We employ an iterative scheme to solve the nonlinear optimization problem over the
complex error landscape. At each stage, we solve for a rigid transformcomposed of a rotation
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R followed by a translation t. We use F+ to solve for the rigid transform α = (R, t) that brings
the data PCD Q to the model PCD P. We apply this transform and repeat.

3.3.1 Registration in 2D

We �rst explain the process in D. At any point x = [x y] ∈ R2, we assume the availability
of an approximant F+ such that F+(x) ≈ d2(x, ΦP). Let F+ be speci�ed in the form

F+(x) = Ax2 + Bxy + Cy2 + Dx + Ey + F,

where A, B, C, D, E, F are the coe�cients of the approximant. More compactly, we can write
F+ in a quadratic form as

F+(x) = [ x y 1 ] Qx [ x y 1 ]T , (.)

where Qx is a symmetric matrix that depends on x. Importantly, the approximant F+(x) is
a valid locally around x.

We denote any point qi of the data PCD Q by [xi yi]. Let a matrix R corresponds to
a rotation by angle θ around the origin. Our goal is to solve for a rigid transform, which
consists of R followed by a translation vector t = [tx ty], that minimizes ∑m

i=1 F+(Rqi +

t). For small θ, we can linearize the rotation by using sin θ ≈ θ and cos θ ≈ 1. So a
er
each iteration step, we get, [xi yi] 7→ [xi − θyi + tx θxi + yi + ty]. If locally Qqi stays
approximately �xed, the residual error between the transformed data and the model PCDs
is given by

ε(θ, tx, ty) =
m

∑
i=1

[ xi − θyi + tx θxi + yi + ty 1 ]Qqi

[ xi − θyi + tx θxi + yi + ty 1 ]T,

(.)

whereQqi denotes thematrix representing the approximant of the squared distance function
toΦP around the pointqi. Our goal is to �nd values of θ, tx, and ty thatminimize this residual
error. Setting the respective partial derivatives of the error ε to zero, we get the following
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linear system


m

∑
i=1


Ii Ji Ki

Ji 2Ai Bi

Ki Bi 2Ci





θ

tx

ty

 =

−


m

∑
i=1


Li

2Aixi + Biyi + Di

Bixi + 2Ciyi + Ei


 , (.)

where Ii = 2(Cix2
i − Bixiyi + Aiy2

i ), Ji = Bixi − 2Aiyi, Ki = 2Cixi − Biyi, Li = Bi(x2
i −

y2
i ) + 2(Ci − Ai)xiyi + Eixi − Diyi and, Ai, Bi, Ci, Di, Ei, Fi denote the entries of the matrix
Qqi . �e transformation resulting from solving Equation . is applied to Q. �is completes
one iteration of our gradient descent process. Next we use the approximants corresponding
to the new positions of qi to get another linear system whose solution is again applied to
the data PCD.�is process is iterated until the residual error falls below a pre-de�ned error
threshold or a maximum number of iteration steps is reached.

Since we do not make any assumption about the initial alignment of P and Q, the rigid
transform computed at any step, can be large. In such cases, we can only take small steps
in the direction of the transform because its computation is based on approximants that are
valid only locally. �is issue of applying a 1/η-fraction of a rigid transform is an important
problem and has been studied in depth in other places [Ale].

We propose a simple way for computing fractional transforms. In our notation, the com-
puted transform vector [θ tx ty] denotes a rigid transform composed of a rotation matrix
R followed by a translation vector t. �is maps q to a point Rq + t. Let the fractional trans-
form be composed of a rotation matrix R′ and a translation vector t′. We de�ne (R′,t′) to be
a 1/η fraction of (R,t) if the following relation holds,

(..(R′(R′q + t′) + t′)...η times) ≡ Rq + t. (.)

From this relation, we can get R′ = R1/η , and t′ = (R− I)−1(R′− I)t where, I is the identity
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matrix. By R1/η , wemean a rotation around the origin by angle θ/η. We defer the important
issue of choosing a suitable value for η to Section ..

3.3.2 Registration in 3D

In this section, we extend the results from the previous section to point cloud surface data
in R3. For any point x = [x y z] ∈ R3, let the corresponding local quadratic approximant
F+ be speci�ed in the form

F+(x) = Ax2 + Bxy + Cy2 + Dxz + Eyz + Fz2+

Gx + Hy + Iz ,
(.)

where A through I are the coe�cients of the quadratic approximant. With slight abuse of
notation, this equation can be written in a quadratic form as F+(x) = xQxxT, where x now
denotes [x y z 1].

Once again, our goal is to �nd the rigid transformwhich brings Q in best alignment with
P. Let the rigid transformbe composed of a rotationmatrix,R, that is parameterized by three
angles (α, β, γ) in the X-Y-Z �xed angle orientation convention, followed by a translation
vector t = [tx ty tz]. Under small motion, the rotation matrix can be linearized as,

R =


cos α − sin α 0

sin α cos α 0

0 0 1




cos β 0 sin β

0 1 0

− sin β 0 cos β




1 0 0

0 cos γ − sin γ

0 sin γ cos γ



≈


1 −α β

α 1 −γ

−β γ 1

 .

(.)

Hence q 7→ Rq + t.

Now the registration problem reduces to �nding values of α, β, γ, tx, ty, tz that minimize
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the residual error

ε(α, β, γ, tx, ty, tz) =
m

∑
i=1

(Rqi + t)Qqi(Rqi + t)T. (.)

�is least square problem can be solved by setting the respective partial derivatives to zero.
�e resulting linear system is given by

 m

∑
i=1

 Pi Si

ST
i Ri

 [ α β γ tx ty tz

]T
=

−



m

∑
i=1



Ui

Vi

Wi

2Aixi + Biyi + Dizi + Gi

Bixi + 2Ciyi + Eizi + Hi

Dixi + Eiyi + 2Fizi + Ii




,

(.)

where,

Pi =


Ji Mi Ni

Mi Ki Ti

Ni Ti Li

 ,

Si =


Bixi − 2Aiyi 2Cixi − Biyi Eixi − Diyi

−Dixi + 2Aizi −Eixi + Bizi −2Fixi + Dizi

Diyi − Bizi Eiyi − 2Cizi 2Fiyi − Eizi

 ,

Ri =


2Ai Bi Di

Bi 2Ci Ei

Di Ei 2Fi

 ,
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Ji = 2(Cix2
i − Bixiyi + Aiy2

i ),

Ki = 2(Fix2
i − Dixizi + Aiz2

i ),

Li = 2(Fiy2
i − Eiyizi + Ciz2

i ),

Mi = −Eix2
i + Dixiyi + Bixizi − 2Aiyizi,

Ni = −Diy2
i + Eixiyi − 2Cixizi + Biyizi,

Ti = −Biz2
i − 2Fixiyi + Eixizi + Diyizi,

Ui = Bi(x2
i − y2

i ) + 2(Ci − Ai)xiyi + Eixizi − Diyizi + Hixi − Giyi,

Vi = Di(z2
i − x2

i )− Eixiyi + 2(Ai − Fi)xizi + Biyizi − Iixi + Gizi,

Wi = Ei(y2
i − z2

i ) + Dixiyi − Bixizi + 2(Fi − Ci)yizi + Iiyi − Hizi,

and Ai through Ii correspond to the entries of the matrix Qqi that represents the local
quadratic approximant around the point qi.

As in the D case, whenever the computed transform (R,t) is large, we utilize a fractional
transform given by R′ = R1/η and t′ = (R − I)−1(R′ − I)t where, I denotes the identity
matrix. A 1/η-fraction of the rotationmatrixR can be computed by the techniques proposed
by Alexa [Ale].

3.4 Squared Distance Function

Given a D point cloud P, we describe two methods for constructing a quadratic approxi-
mant F+ to the squared distance function d2 from any point x ∈ R3 \MA(ΦP) to ΦP. At
any point x, our goal is to construct an approximant F+ such that F+(x) ≈ d2(x, ΦP) is
second order accurate. Points on the medial axis MA(ΦP) have non-di�erentiable squared
distance function and hence, their second order accurate approximants do not exist. In the
construction phase, we ensure that the approximants are non-negative over R3, since F+

is used as an objective function in a minimization process as shown in Section .. In D,
similar approximants can be easily computed.

Beforewe describe how to compute F+ for a given PCD,we summarize a few basic results
on the squared distance function of a surface as observed by Pottmann and Hofer [PH].
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For each point on a given surface, we assume that the unit normal~n along with the principal
curvature directions~e1,~e2 are given. �ese three unit vectors combine to form a local coor-
dinate system called the principal frame. At umbilical points, where the principal curvature
directions are not well-de�ned, any two orthogonal unit vectors on the tangent plane may
be used as ~e1,~e2. Let ρi be the principal radius of curvature in the direction ~ei. �e normal
footpoint y denotes the closest point on the surface from x. Let x1, x2, x3 represent the coor-
dinates of x in the principal frame at y. �e signed distance from x to its normal footprint
is denoted by d. �e sign of d is positive if x and the centers of the osculating circles at y, lie
on the same side of the surface around y.

�e second order Taylor approximant [PH] of the squared distance function to the
surface at a point x can be expressed in the principal frame at y as

Fd(x) = Fd(x1, x2, x3) =
d

d− ρ1
x2

1 +
d

d− ρ2
x2

2 + x2
3. (.)

We shall use δj, j = 1, 2, to denote d/(d− ρj).

Let us look at two important special cases.

• For d = 0 we obtain Fd(x1, x2, x3) = x2
3. �us, if we are close to the surface, i.e. in its

‘near-�eld’, the squared distance function to the tangent plane at the normal footpoint,
is a quadratic approximant.

• For d = ∞ we obtain Fd(x1, x2, x3) = x2
1 + x2

2 + x2
3, which is the squared distance from

x to its footpoint y. So the distances to normal footpoints are second order accurate if
we are in the ‘far-�eld’ of the surface.

In order to use Fd as an objective function for a minimization, we want the approximant
to be non-negative over R3. To this end, we replace δj with

δ̂j =

d/(d− ρj) if d < 0,

0 otherwise.
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�e resulting approximant F+ is positive de�nite and is given by

F+(x) = δ̂1x2
1 + δ̂2x2

2 + x2
3. (.)

�is quadratic approximant F+ of d2 is simply a weighted sum of the squared distance
functions x2

1, x2
2, x2

3 to three planes: the two principal planes and the tangent plane at the
normal footpoint. Based on this observation, we transform Equation . to the global co-
ordinate system as,

F+(x) = δ̂1 (~e1 · (x− y))2 + δ̂2 (~e2 · (x− y))2 +

(~n · (x− y))2 . (.)

We can now express this equation in the form given by Equation . to get values for the
coe�cients A through I.

3.4.1 On-Demand Computation

Given a point x, in our �rst method for computing a second order accurate squared distance
�eld F+ for a given PCD P, we perform an on-demand computation of Equation .. For
this method we �rst need to compute the normal footpoint of x to P. As an approximation,
we treat p, the closest point to x in P, as the normal footpoint. �is point is found using
an approximate nearest neighbor data structure [AMN+]. Figure . shows the scenario
in D. When the P is a sparse sampling of ΦP, we can use the underlying moving least
square (MLS) surface to get a better approximation for the normal footpoint [AK]. We
further need to evaluate local curvatures at points of P in order to use Equation .. �ese
quantities are computed in the preprocessing step of our algorithm.

At each point of a given PCD, we �rst determine the principal frame using a local covari-
ance analysis as detailed in [CP, MNG]. If the the underlying surface ΦP is regular, at
each of point p of P, a local parametrization exists. In the principal frame at p, we estimate
the local surface by least square �tting a quadratic function of the form ax2 + bxy + cy2 +

dx + ey to the neighboring points in P. Once we estimate the coe�cients a through e, we can
use facts from di�erential geometry to get the Gaussian curvature K and themean curvature
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x

p y

n

e 1

ΦP

ρ1

d

Figure .: Point Footprint. A query point x ∈ R2 has a footpoint y ∈ R2 on the surface ΦP
represented by a PCD P. We approximate the footpoint by p, the closest point in P from x.
�e principal frame at the footpoint is spanned by~e1 and~n. �e osculating circle to ΦP at p
has a radius of curvature ρ1. In the �gure, the signed distance d from x to the footpoint p is
positive.

H using

K =
4ac− b2

(1 + d2 + e2)2 (.)

H =
a(1 + e2)− bde + c(1 + d2)

(1 + d2 + e2)2 .

Finally we evalute the principal radii of curvature ρi as 1/(H ±
√

H2 − K).

�e correctness of these estimates depends on the sampling density of the given PCD
and on the measurement noise. Further, the neighborhood size used for the least square �ts
can be adapted to the local shape [MNG]. In low noise scenarios, when the local estimates
of the di�erential properties can be reliably computed, the approximants F+ given by this
method are good.

3.4.2 Quadratic Approximants using d2Tree

Our secondmethod for computing approximate quadratic approximants involves least square
�tting of quadratic patches to a sampled squared distance function. For a given PCD, these
quadratic patches are pre-computed and stored in a special data structure called the dTree
[LPZ]. Given any point x, in this method we do a point location in the cells of the dTree
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(a) (b)

Figure .: dTree for curves and surfaces. dTree can be used in D (le
) and in D (right) to
store quadratic approximants of the squared distance �elds correct to some error threshold.
�e maximum number of levels and the error threshold, which are parameters used during
the construction of this quad-tree like data-structure, determine the size of the cells. In the
D case, we overlay the Voronoi diagram of the PCD on top of the dTree, to illustrate that
small cells are created around the medial axis.

and return the quadratic approximant stored in the corresponding cell.

Simply put, the dTree is an octree-like (quad-tree in D) data structure, where each
cell stores a quadratic �t to the squared distance function, correct to some maximum error
threshold. �e approximants are stored in the form as given in Equation . (Equation .
in D). Details of a top-down construction of dTree can be found in [LPZ]. Here we
describe a bottom-up construction, which is computationally more e�cient.

As a �rst step, a sampled squared distance �eld is build for an input PCD by sweeping the
space starting from the PCD P and propagating the squared distance information [LPZ].
Depending on the number of levels, which is an input to the algorithm, the space is divided
into smallest allowable cells (see Figure .). In each cell, a quadric patch, that best �ts
the sampled squared distance �eld, is computed. �e �tting error and the matrices used to
compute the coe�cients of the �t are saved in each cell. At the next level, the neighboring
cells (four in D and eight in D) are merged to form a larger quadric patch, only if the
resulting �tting error is below the given error threshold. �e larger quadric patches can
be e�ciently �tted by re-using the matrices stored in the smaller cells. �e quadratic matrix
stored in any cell ismade positive semi-de�nite during construction. �emaximumnumber



.. squared distance function 

of levels of the tree and the error threshold are the required parameters for the construction
of this data structure. Notice that there exists a tradeo� between the size of the cells and the
accuracy of the quadratic approximants.

Unlike the on-demandmethod for computing quadratic approximants described before,
the dTree approach does not need estimates of the local curvature or any nearest neighbor
structure. Quadratic approximants computed by dTree, implicitly learn the local curvature
information by �tting quadrics to the sampled squared distance �eld. We �nd thismethod to
be robust to noisy or under-sampled PCD. Given a query point x, computing F+(x) simply
involves a point location in this dTree structure, and does not require any explicit corre-
spondence between points of the input PCDs.

(a)

x

z

(b) (c)

Figure .: Funnel of convergence for aligning the bunny model to itself. �e bunny is rotated
(around the y-axis) and translated (along the x-z plane) to generate di�erent initial posi-
tions for the data PCD. �e �gure in the middle denotes the sampling pattern used to get
the initial positions. �e rotation angle is sampled at 10◦ intervals, while the maximum ra-
dial translation of the bunny is around 5× the height of the bunny. Regions in black denote
convergence to the correct solution. �e convergence funnel of the point-to-plane ICP (le
)
is found to be quite narrow and unstable. Under similar conditions, our on-demand algo-
rithm (right) is found to have a signi�cantly broader, and much more stable convergence
funnel. �e shape of the convergence funnel corresponding to our dTree based approach
is similar.
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3.4.3 Point-to-point and point-to-plane ICP error metrics as special cases

of quadratic approximant

In our framework, the standard ICP algorithms can be reduced to special cases by select-
ing suitable approximants to the squared distance function. Basic point-to-point ICP uses
squared distance to the closest point as its approximant, i.e. F+(x) = ‖x − y‖2 while the
Chen–Medioni point-to-plane ICP uses F+(x) = (~n · (x − y))2 as the quadratic approxi-
mant (Equation .). In the form given by Equation ., point-to-point ICP has δ̂i = 1,
and point-to-plane ICP has δ̂i = 0. From an optimization perspective, there are only slight
di�erences between this ICP-like algorithm and the standard ICP [BM], which does not
linearize the motion [Pot]. However, as pointed out in Section ., such approximants
are second order accurate only in the ‘far �eld’ and ‘near �eld’ of the PCD, respectively, and
hence neither of these algorithms is well-behaved for all initial placements of the model and
data PCDs.

3.5 Convergence Issues

In this section, we discuss the convergence behavior of point-to-point and point-to-plane
ICP algorithms, and then give bounds on the convergence rates for our algorithm. In con-
trast to ICP algorithms, our scheme uses second order accurate square distance approxi-
mants at all point in space, and hence, exhibits better convergence properties.

Experimentally, the point-to-point ICP algorithm converges linearly. In a recent result,
Pottmann has provided theoretical justi�cation for this behavior [Pot]. We de�ne a low
residual problem as one where the data shape �ts the model shape well, and a zero residual
problem as one where the �t is exact. For a low residual problem, when the minimizer is
approached tangentially, point-to-point ICP has a very slow convergence[Pot, RL].

We recall that the Chen-Medioni approach iteratively minimizes the sum of squared
distances to the tangent planes at the normal footpoints of the current data point locations.
�is implies a gradient descent in the error landscape, where the squared distance to the
tangent plane is used to de�ne the objective function. From an optimization perspective,
this process corresponds to Gauss–Newton iteration. For a zero residual problem, and a
su�ciently good initial position, this algorithm converges quadratically [Pot]. In practice,
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Algorithm  Brings a data PCD Q in alignment to a model PCD P using on-demand com-
putation or dTree based approach or point-to-point ICP or point-to-plane ICP.
: if using on-demand method then
: Build an approximate nearest neighbor structure for P.
: Pre-compute principal frame and radii of curvature ρj, j = 1, 2, at each point pi ∈ P

as described in Section ...
: else if using dTree method then
: Build dTree with a suitable error threshold. (see Section ..)
: end if
: count←MaxCount
: repeat
: for each point qi ∈ Q do
: Compute F+(qi) using method described in Section .. for on-demand ap-

proach. For dTree based approach refer to Section ... For point-to-point or
point-to-plane ICP refer to Section ...

: end for
: Using F+(qi), build and solve the linear system given in Section ..
: if Armijo condition not satis�ed then
: Take 1/η fraction of the computed rigid transform (see Section .). Value of η

chosen via line-search to satisfy Armijo rule (see Section .).
: end if
: if (residual error < ErrorThreshold) then
: break
: end if
: count← count− 1
: until count 6= 0

the Chen-Medioni method also works well for low residual problems. Notice that in the
‘near-�eld’, the squared distance to the tangent plane is a second order accurate approximant
to d2. So point-to-plane ICP performs much better for �ne registration than the point-to-
point ICP algorithm. However, there is no reason to expect convergence when the two PCDs
are su�ciently apart in the transform space, and in practice, this is found to be true.

For low residue problems, our algorithm also exhibits quadratic convergence, which
means that the error reduction is of the form

ε+ ≤ Cε2
c (.)
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where, C denotes the convergence constant, εc denotes the error in the current step, and ε+

denotes the error a
er application of the computed rigid transform. Here, the errormeasures
the distance of a position of the PCD to the optimal �nal position, e.g. via the quadratic
mean of the distances between current and �nal data point locations. For each point qi, our
algorithm computes a second order approximant F+ to the squared distance function of the
surface ΦP represented by PCD P. Using these approximants, we derive the best aligning
transform for Q by following a gradient descent with Newton iteration steps [Kel] in the
rigid transform group (see Section .). We continue until the residual error falls below a
pre-de�ned threshold or a maximum number of iteration steps has been reached. Since the
presented method is a Newton algorithm, it converges quadratically [Kel, Pot].

As mentioned in Section ., if the residue ε is large, we apply only 1/η fraction of
the computed transform to prevent oscillations, or even divergence. Various line search
strategies exist for choosing good values for η [Kel]. In our implementation, we used the
Armijo condition [Kel] to select η. �is results in a damped Gauss–Newton algorithm. It is
well known in optimization, that algorithms which uses the Armijo rule converge linearly.
Hence, to ensure faster convergence for large residue problems, it may be better to select a
quadratic approximant of the motion, instead of a linear one [Pot].

Our gradient descent based optimization can get stuck at a local minimum. We bound
the maximum residual error for a given PCD pair, and use it to detect a local minimum. A
point cloud P, sampled from a surface ΦP, is said to be sampled r-dense, if any sphere with
radius r centered on ΦP contains at least one sample point in P [HDD+]. Suppose that the
model PCD P is an rP-dense sampling of ΦP. Further, assume the measurement noise only
perturbs any point by a maximum amount of σP and σQ respectively for the given PCDs
P, Q. Under this restrictive sampling model, when ΦQ represents a subset of ΦP, a �nal
residual matching error ε greater than M(rP + σP + σQ)2 indicates the algorithm has been
stuck at a local minima during the search process. When such a situation happens, we may
randomly perturb Q to a new orientation, and try to align the two PCDs starting from that
position.

To further study this global convergence property, we de�ne the funnel of convergence
for a registration algorithm, as the set of all initial poses of a PCD Q, which can be suc-
cessfully aligned with P, using the given algorithm. Notice that the funnel only measures
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global convergence and not speed. A broad funnel indicates that the algorithm can success-
fully handle a wide range of initial positions. An algorithm is said to have a stable funnel if
the convergence zones, in the transform space, are clustered and not arbitrarily distributed.
A stable funnel is desirable, since this can enable a systematic way of generating positions
for random re-starts, using some branch and bound approach. Experimentally, we observe
that our algorithm has a broader and more stable funnel of convergence as compared to the
point-to-plane ICP variant. �is can be explained by the fact, that our algorithm makes use
of higher order surface properties.

3.6 Results

We test our algorithm on a variety of data sets with di�erent amounts of noise, and compare
its performance against point-to-point and point-to-plane ICP algorithms.

A brief summary of our registration framework is given in Algorithm . We compare
the performance of approaches based on the choice of the approximant F+ of the squared
distance function at any point x:

. on-demand computation of quadratic approximant (Section ..)

. quadratic approximant using dTree (Section ..)

. squared point-to-point distance (point-to-point ICP)

. squared distance to the tangent point at the footpoint of x (point-to-plane ICP)

In our implementation, we test for Armijo condition to ensure stability of the algorithms.
On the bunnymodel, which consists of 50, 282 points, we compare the convergence fun-

nel of point-to-plane ICP and that of our algorithm based on on-demand computation. A
copy of the same PCD is rotated around the y-axis and translated to di�erent positions along
the x-z plane. Figure . shows that the convergence funnel of point-to-plane ICP is quite
narrow when the initial displacement is large. Under similar conditions, our algorithm is
found to have a much broader convergence funnel. Our convergence funnel is also more
stable. Experimentally, the initial translation is found to have little e�ect on the convergence
of our algorithm.
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Next we compare the convergence rates for the four variants listed before. For both on-
demand and dTree based approaches, the pre-computation time depends on the size n of
the model PCD. For point-to-point, point-to-plane and on-demand computation, at each
iteration, F+ for a point x can be computed in O(1) time a
er the nearest neighbor query
has been answered. For dTree, the nearest neighbor query is replaced by point location in
the dTree cells. �e solution of the linear system involves an inversion of a 6× 6 matrix.
Since the amount of work in each iteration step for any of the algorithms is roughly same,
we simply count the number of iterations for comparing speed.

In Figure ., we plot the residual error vs iteration count for four approaches. In the
presence of noise and for large residues, point-to-plane ICP o
en fails to converge. In such
noisy scenarios, since the estimates of local principal radii are bad, our on-demand algo-
rithm is found to be marginally worse than point-to-point ICP. �e dTree based method
still converges fast, since the cell-sizes automatically get adjusted during their construction
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Figure .: Residual error plots. Plots of residual error vs iteration count for bunny PCD.
When the model and data PCDs, both corrupted with noise, start far apart in the transform
space, the point-to-plane ICP fails to converge to the correct solution (le
). However, al-
gorithms using any of the other square distance approximants do converge, with the d2Tree
based approach converging fastest. Middle: For good initial position and small residual
problem (the two PCDs align well), the point-to-point ICP algorithm has a slow conver-
gence, while optimization based on any of the other squared distance approximants, con-
verges quadratically. �e �gure to the right shows the e�ect of changing the error threshold
value used for constructing the dTree. As the threshold is increased, a larger neighborhood
of the squared distance function is captured by each of the cells of the tree and hence, the al-
gorithm converges faster. However, for su�ciently high error threshold values, the distance
approximants get too crude, and the method starts to deteriorate.
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(a) (b)

Figure .: Subpart matching on the bunny model. A partial scan of the bunny (shown in
purple) is registered to the bunny, the model PCD. �e initial arrangement of the PCDs is
shown to the le
. Our algorithm found the correct match (middle,right) in six iterations.

phase, to partially average out the e�ect of noise. However, in low residual cases, for reasons
explained in Section ., all algorithms except for point-to-point ICP converge quadrati-
cally. �e threshold value used for constructing the dTree is also varied. As the threshold
is increased, a larger neighborhood of the squared distance function is captured by each of
the cells of the tree and hence, the algorithm converges faster. However, for su�ciently high
error threshold values, the distance approximants get too crude, and the method starts to
deteriorate.

Our algorithm is able to handle the case when the data PCD is a subset of the model
PCD. We take a partial scan of the bunny consisting of 17, 600 points. �is scan is from
scanned data and is corrupted with measurement noise. We used the on-demand algorithm
to match the partial scan to the complete bunny model PCD.�e starting arrangement and
the �nal match are shown in Figure ..

Finally we test the robustness of our approach in presence of noise and varying sampling
density. We try to align a part (consisting of 14, 519 points) of a ball-joint with the socket of
a hip-bone represented by 132, 538 points. Note the sampling density and sampling pattern
are vastly di�erent across the twomodels. �e ball-joint is much densely sampled compared
to the hip-bone. Even in this case, for reasonable starting positions, we got a good �nal
alignment (see Figure .). �e whole ball-joint is shown just to illustrate the goodness of
the alignment. Wemanually selected a part of the ball-joint to satisfy our constraint that ΦQ
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(a) (b)

Figure .: Subpart matching on the hip-joint model. �egoal is to �t a part (shown in purple)
of the ball-joint to the hip-bone (shown in green). �e starting arrangement (le
) and the
�nal alignment (right) are shown. �e whole ball-joint is shown to help the reader judge
the correctness of the match. Our algorithm is robust enough to handle varying sampling
density and noise in the given PCDs.

represents a subset of ΦP.

3.7 Summary

In this chapter, we de�ned distance between two shapes. Given such a notion of distance
and assuming the models are in good initial alignment, we showed how to bring the objects
into a better alignment using Gauss-Newton optimization.

Using techniques presented so far, we can acquire geometry of an object by capturing its
shape from multiple directions and then stitching the scans together using global, followed
by local registration. Inmany cases, once we put the scans together we observe that we failed
to capture the complete object. At this point we can acquiremore scans corresponding to the
missing regions. Is there an alternate solution? In the next chapter, we explore this question.



4
Shape Completion using Geometric

Priors

Done is better than perfect.

— Scott Allen

In a scanning scenario, a
er having put together several scans, it is o
en the case, that we
�nd regions missing in the combined object. In many applications accurately determining
the missing regions, using further scans, is not always required. In fact any plausible and
seamless substitution of the missing parts is acceptable. In this chapter, we describe how
to perform shape completion using information from a database of existing shapes. Using
our framework, we can obtain a complete and consistent D model representation using
incomplete scans and geometric priors [PMG+].

Obtaining a complete and consistent D model representation from acquired surface
samples is o
en a tedious process, and can easily take multiple hours, even for an expe-
rienced user. Signi�cant manual assistance is o
en required for tasks such as scan path
planning, data cleaning, hole �lling, alignment, and model extraction. Knowledge about
the acquired shape gained in this process is typically not utilized in subsequent scans, where
the same time consuming procedure has to be repeated all over again. Our goal is to sim-
plify the model creation process by exploiting previous experience on shapes stored in a
Dmodel database. �is allows the generation of clean and complete D shapemodels even


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from highly incomplete scan data, reducing the complexity of the acquisition process signif-
icantly. �emain idea is to mimic the experienced-based human approach to shape percep-
tion and understanding. �is is possible because we make extensive use of prior knowledge
about shapes, acquired over years of experience. When seeing an object, we immediately
put it into context with other similar shapes that we have previously observed and transfer
information from those shapes to �ll missing parts in the perceived object.

In digital D shape acquisition, we are faced with a similar problem: Most optical ac-
quisition devices will produce incomplete and noisy data due to occlusions and physical
limitations of the scanner. How can we obtain a complete and consistent representation of
the D shape from this acquired data? One approach is to apply low-level geometric oper-
ations, such as noise and outlier removal �lters [Tau, JDD, FDCO, WPH+] and
hole-�lling techniques based on smooth extrapolations, e.g., [DMGL, VCBS, Lie,
CDD+]. �esemethods are successful in repairing small de�ciencies in the data, but have
di�culties with complex holes or when large parts of the object are missing. In such cases,
trying to infer the correct shape by only looking at the acquired sample points quickly be-
comes infeasible. A commonway to address this ill-posed problem is to use an explicit prior
in the form of a carefully designed template model. �e prior is aligned with the acquired
data and holes are �lled by transferring geometric information from the warped template.
�e cost of designing the template model is quickly amortized when a whole set of sim-
ilar objects is digitized, as has been demonstrated successfully with human heads [BV,
KHYS], and bodies [ACP]. We extend this idea to arbitrary shapes by replacing a sin-
gle, tailor-made template model with an entire database of D objects. �is allows shape
completion by combining geometric information from di�erent context models.

To successfully implement such a system, we need to address the following issues: How
can we extract models from the database that provide a meaningful shape continuation in
regions of missing data? How can we compute and consistently evaluate local shape defor-
mations that align the context models with the acquired data? How can we select among
multiple database models the ones that provide the most adequate shape completion in dif-
ferent regions of the scan? And �nally, how can we blend geometric information from dif-
ferent models to obtain a complete and consistent representation of the acquired object?
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Figure .: Shape completion pipeline. High-level overview of our context-based shape com-
pletion pipeline.

4.1 RelatedWork

Surface reconstruction from point samples has become an active area of research over the last
few years. Early methods based on signed distance �eld interpolation have been presented
by [HDD+] and [CL]. Voronoi-based approaches with provable guarantees where in-
troduced by [ABK] and [DG], who extended their work in [DG] to handle noisy
input data. While these techniques can handle small holes and moderately under-sampled
regions in the input data, they are less suited for data sets with large holes that o�en occur
in D data acquisition. To address this problem, various methods for model repair based on
smooth extrapolation have been proposed. [CBC+] use radial basis functions to extract
manifold surfaces from incomplete point clouds. [DMGL] presented an algorithm that
applies volumetric di�usion to a signed distance �eld representation to e�ectively handle
topologically complex holes. An extension of this idea has been proposed by [VCBS],
who use partial di�erential equations to evolve the distance �eld, similar to inpainting tech-
niques used for images. [SACO] presented a system that preserves high-frequency de-
tail by replicating local patches within the acquired D data set, as an extension of the D
method proposed in [DCOY].

Other approaches for shape completion are the triangulation-based method proposed
by [Lie] and the system based on �nite elements presented in [CDD+]. �e underlying
assumption in all of these methods is that an appropriate shape continuation can be inferred
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from the acquired sample points only, using generic smoothness or self-similarity priors for
missing parts of themodel. Since the surface reconstruction problem is inherently ill-posed,
the use of explicit template priors has been proposed by various authors. [RA] presented a
method to recognize and �t a parametric spline surface to acquired surface data. Template-
based hole �lling has also been used in [BV, KHYS, BMVS, ACP], where input
data and morphable template model were represented as triangle meshes. �ese methods
are well-suited for object classes with well-de�ned shape variability, where a single template
model can be adjusted to �t the entire acquired data set. Our approach di�ers in that we are
not assuming a priori knowledge of the underlying shape space, but try to infer automatically
how to combine di�erent context models that are retrieved from a database for the speci�c
input data produced by the scan.

A central component of our system is a method for computing non-rigid alignments of
database models with the acquired input data. [ACP] and [SP] presented alignment
algorithms similar to ours that use an optimization framework to compute a smooth warp-
ing function. We extend this scheme to allow a quantitative comparison of the quality of
the alignment across di�erent models, which has not been a concern in previous methods.
An interesting alternative has been proposed by [ASK+], who introduced a probabilistic
scheme for unsupervised registration of non-rigid shapes. Our system bears some resem-
blance to the shape modeling system proposed by Funkhouser et al. [FKS+], where the
user can create new models by cutting and pasting rigid parts of existing shapes retrieved
from a shape database. �e focus of their work is on creative design and interaction, while
we concentrate on model repair and shape completion of surface scans.

Contributions

We de�ne a shape similarity metric and corresponding non-rigid alignment method that al-
lows to consistently evaluate the quality of �t of di�erent context models. We present an au-
tomatic segmentation method that locally selects the best matching geometry, and a blend-
ing scheme that allows to combine contributions from di�erent models, while preserving
appropriate continuity constraints. Our algorithms are designed toworkwith uncertain data
and can directly be applied to highly incomplete raw scanner output. We show how these
methods can be integrated to yield a complete context-based shape completion pipeline.



.. related work 

4.1.1 Overview

Figure . gives an overview of our shape completion pipeline. D acquisition devices typ-
ically produce a set P of possibly noisy point samples pi ∈ R3 that describe (parts of) a D
boundary surface of a D object. We assume that P is equipped with approximate normals,
which are commonly provided by the scanner, or can be estimated directly from the point
samples [HDD+]. �is input point cloud is pre-processed using multi-scale analysis to
obtain a scalar con�dence estimate that quanti�es the consistency of each sample point with
its neighboring samples. Subsequent stages of the pipeline will take these con�dence weights
into account to adapt the processing to the uncertainty in the acquired data. In the next stage,
we retrieve a small set of candidate models from the database using a combination of multi-
ple retrievalmethods. �e candidatemodels are thenwarped tomatch the shape of the input
point cloud. To compute this non-rigid alignment we use an optimization process that bal-
ances geometric error, distortion of the deformation, and semantic consistency de�ned by
a small set of feature correspondences. We segment the warped models into parts that best
correspond to the input data based on a local shape similarity metric. Context information
is propagated into regions ofmissing data, while continuously updating the alignment to en-
sure consistency between di�erent context models. �e segments are then combined using
a geometric stitching technique that blends adjacent parts from di�erent models to avoid

Figure .: Scanning a co�ee creamer. Le
: Acquisition setup with Cyberware Desktop D
Scanner  and physical model, right: Raw point cloud obtained from six range images in a
single rotational scan. �e spiky outliers are artifacts caused by specular re�ections.
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visual discontinuities along the seams. If a successful shape completion has been obtained,
the �nal model is entered into the database for future use as a context model. �e following
sections discuss these individual stages inmore detail, using the data set shown in Figure .
to illustrate the complete shape completion pipeline. Note that in this model almost half of
the surface geometry is missing due to occlusions, including the bottom and interior of the
pot, as well as parts of the handle. Hole-�lling techniques based on extrapolation would not
be able to recover the correct shape from this data, but would require a signi�cantly more
complex scanning procedure with multiple scans of di�erent poses of the object.

4.2 Data Classification

As illustrated in Figure ., the acquired sample set P is inherently unreliable and cannot be
treated as ground truth. Noise and outliers introduce uncertainty that needs to be considered
when trying to reconstruct a consistent model. We compute per-point con�dence estimates
as a combination of two local geometry classi�ers that analyze the distribution of samples
within a small sphere centered at each sample point. �e �rst classi�er cλ

i ∈ [0, 1] measures
the quality of �t of a local tangent plane estimate at pi ∈ P, while the second classi�er
cσ

i ∈ [0, 1] analyzes the uniformity of the sampling pattern to detect hole boundaries (see
Appendix). �e combination of both classi�ers yields the con�dence estimate ci = cλ

i · cσ
i ∈

[0, 1], which we evaluate at multiple scales by varying the size of the local neighborhood
spheres. Similar to [PKG], we look for distinct local maxima of ci across the scale axis to
automatically determine the appropriate scale at each sample point For all examples in this
work we use ten discrete scale values, uniformly distributed between 2h and 20h, where h

is the minimum sample spacing of the scanning device. Figure . shows the results of this
multi-scale classi�cation. For more details, please refer to appendix a.

4.3 Database Retrieval

To transfer geometric information from the knowledge database to the acquired object, we
need to identify a set of candidate models M1, . . . , Mn that are suitable for completing the
input data P. Database retrieval of D objects has gained increasing attention in recent years
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and a variety of shape descriptors have been proposed to address this problem (see [TV]
for a recent survey). In our case the retrieval problem is particularly di�cult, since we are
dealing with noisy, potentially highly incomplete data. We thus rely on a combination of
textual search and shape-based signatures, similar to [FKS+]. We �rst con�ne the search
space using a few descriptive keywords provided by the user. On this restricted set ofmodels,
we compute a similarity measure based on point-wise squared distances. We use PCA to
factor out global scaling and estimate an initial pose. �en we apply the alignment method
described in chapters  and  to optimize the rigid part α of the transform by minimizing
the sum of squared distances E(M, P) between acquired shape P and a database model M

given as
E(M, P) = ∑

i∈P
ci‖α(pi)− qi‖2, (.)

where qi is the closest point on M from α(pi). Note that the squared distances are weighted
by the con�dence estimate ci to avoid false alignments due to outliers or noisy samples.
Equation . can by evaluated e�ciently by pre-computing the squared distance �eld of
each database model as described in detail in [MGPG]. �e residual of the optimization
is used to rank the retrieved context models. Objects that align well with the acquired data
(low residual) are likely candidates for a successful shape completion and will thus be given
a high score. Figure . shows the results of the database retrieval for the co�ee creamer
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1.71 1.46 1.27 1.01.93

Figure .: Database search. Models retrieved by a combination of geometric and textual
query ordered from le� to right according to decreasing relative alignment error. Top row:
Original database models, bottom row: Aligned models a�er re-scaling.

example. Later in chapter , we present a randomized algorithm for e�cient retrieval of
partial matches from a database.

4.4 Non-rigid Alignment

�e global similarity transform computed in the retrieval stage will in general not align the
extracted context models exactly with the acquired data. We thus need to deform each model
M before transferring shape information from M to P. �e goal is to �nd a smooth warping
function T : M → R3 such that the deformed model M = T(M) matches P. At the same
time we want the distortion of M induced by T to be as small as possible. �e idea is that
if only a small deformation is necessary to align a model with the acquired data set, then
this model is more likely to provide a meaningful continuation of the shape in regions of
missing data. We capture this intuition by de�ning a shape matching penalty function Ψ that
combines the distortion of the transform and the geometric error between warped model
and input data. �e optimal warping function T can then be determined by minimizing this
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Figure .: Measuring Distortion. Measuring distortion for a continuous surface (a) and in
the discrete setting (b). �e shaded region in (b) shows the area Aj of the restricted Voronoi
cell of vj.

function [ACP], [SP]. Similar to the rigid alignment computed in Section ., we use
the residual of the optimization to evaluate the quality-of-�t of each database model. Hence
the shape penalty function should be compatible across di�erent context models to allow
a quantitative comparison between the models. Additionally, we need to be able to do this
comparison locally, so that we can determine whichmodel best describes the acquired shape
in a certain region of the object.

4.4.1 DistortionMeasure

To meet the above requirements and make the penalty function independent of the speci�c
discretization of a contextmodel, we derive the distortionmeasure for discrete surfaces from
the continuous setting (see also [Lev]). Let S be a smooth -manifold surface. We can
measure the distortion Φ(S, T) on S induced by the warping function T as

Φ(S, T) =
∫

S

∫
ϕ

(
∂

∂r
Tx(r, ϕ)

)2

dϕdx, (.)

where Tx(r, ϕ) denotes a local parameterization of T at x using polar coordinates (r, ϕ). �e
inner integral measures the local distortion of the mapping T at x by integrating the squared
�rst derivative of the warping function in each radial direction (see Figure . (a)). Since
we represent database models as triangle meshes, we approximate T as a piecewise linear
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function by specifying a displacement vector tj for each vertex vj ∈ M. �e angular integral
in Equation . is discretized using a set of normal sections de�ned by the edges ejk = vj −
vk, where k ∈ N1(j) with N1(j) the one-ring neighborhood of vertex vj. We approximate
the �rst derivative of T using divided di�erences, which yields the discrete version of the
distortion measure Φ(M, T) as

Φ(M, T) = ∑
j∈M

∑
k∈N1(j)

Ajk

(
tj − tk

|ejk|

)2

. (.)

As shown in Figure . (b), Ajk is the area of the triangle de�ned by vj and the Voronoi edge
dual to ejk in the Voronoi diagram of P restricted to N1(j). Note that Aj = ∑k∈N1(j) Ajk is
the area of the Voronoi cell of vj restricted to M, hence the surface area of M is given as
AM = ∑j ∑k Ajk.

4.4.2 Geometric Error

Additionally, we de�ne a geometry penalty function Ω that measures the deviation of the
deformed model from the input sample. For two smooth surfaces S1 and S2, we can de�ne
the squared geometric distance of S1 to S2 as

Ω(S1, S2) =
∫

S1

d(x, S2)2dx, (.)

where d(x, S2) is the shortest distance of a point x ∈ S1 to the surface S2. To discretize this
equation we represent the surface SP de�ned by P as a collection of tangent disks attached
to each sample pi ∈ P. �e orientation of the disk is given by the normal at pi and its radius
is determined from the size of a local k-neighborhood, similar to [PKKG]. We can then
approximate the geometric error by summing up the area-weighted squared distance of each
transformed vertex vj + tj of M to the closest compatible point qj on SP, leading to

Ω(P, M, T) = ∑
j∈M

ωj Aj‖vj + tj − qj‖2. (.)
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Figure .: Correspondence weights vj are determined using a bidirectional closest point
search.

By compatible we mean that the normal of the tangent disk of qj deviates less than 90o from
the normal of vj to avoid matching front- and back-facing parts of both surfaces. �e ad-
ditional weight ωj is de�ned as the product of two terms: �e con�dence estimate cj of the
sample point in P associated with qj, and a correspondence weight vj that quanti�es the
validity of the correspondence between vj and qj. Since P can be incomplete and M might
contain parts that do not match with the acquired object, we need to discard vertices of
M from contributing to the geometric error, if no valid correspondence with the samples
of P can be established. We de�ne the correspondence weight using a simple, but e�ec-
tive heuristic. Let rj be the closest point on the surface of model M from qj. If vj and rj

are close, then we have a strong indication that the correspondence is valid. We thus set
vj = exp(−‖vj − rj‖2/h2), where h is the average local sample spacing of P (see Figure .).

4.4.3 Optimization

We combine the distortionmetric Φ and the geometric error Ω to de�ne the shapematching
penalty function Ψ as

Ψ(P, M, T) = α ·Φ(M, T) + (1− α) ·Ω(P, M, T), (.)
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Figure .: Non-rigid alignment. Points without valid correspondence are colored in gray in
the images on the right.

where α ∈ [0, 1] is a parameter that allows to balance distortion and geometric error. �e
warping function T is then computed iteratively by minimizing Ψ with respect to the un-
known displacement vectors tj. �is yields a sparse linear system of size 3n× 3n, where n

is the number of vertices in the mesh, that we solve using a sparse matrix conjugate gra-
dient solver. We use a multi-level optimization scheme similar to the method proposed
by [ACP] and later adopted by [SP].

Figure . shows the two warped context models for the co�ee creamer example.

Feature Correspondences. To avoid local minima in the optimization of Equa-
tion ., we adapt the geometric penalty to include a small set F ⊂ M of user-speci�ed
feature points. �e user explicitly de�nes this set by selecting vertices of M together with
corresponding points in P. �e in�uence of each feature vertex vj ∈ F can be controlled
by scaling the weight ωj in Equation .. Explicit feature points are crucial for models for
which the correct correspondence cannot be derived with the purely geometric approach
of Section ... An example is shown in Figure ., where the semantics of each part of
the models is clearly de�ned and needs to be observed by the warping function. Feature
points also provide a mechanism for the user to control the non-rigid alignment for di�cult
partial matches as shown in Figure .. Similar to [ACP], we start the optimization with
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high feature weights and strong emphasis on the smoothness term to obtain a valid initial
alignment on a low resolution model. At higher resolutions we decrease the in�uence of the
feature points and steadily increase α to about 0.9 so that the geometric error dominates in
the �nal alignment.

4.5 Segmentation

A
er non-rigid alignment, we now need to determine how to compose the �nal model from
di�erent parts of the warped context models. In particular, we need to decide which model
provides the most adequate shape continuation in regions of missing data. �is decision
is based on the matching penalty Ψ computed during the alignment stage, as it provides a
measure of how well the deformed database models approximate the shape of the acquired
object. We �rst compute a segmentation of the context models into patches that cover the
input point cloud in regions of high data con�dence. In the next section we will describe
how to extrapolate geometric information from these patches to consistently �ll in missing
regions and obtain a complete model representation.

�e initial segmentation is computed using an incremental region growing process as
shown in Figure .. Starting from a seed point pi ∈ P, we determine which model best
matches the acquired data in the vicinity of that point by evaluating the matching penalty
on a small patch around pi. �e model Mk with the smallest local penalty will be our can-
didate for this region. We then successively expand this patch by adding triangles adjacent
to the patch boundary. �e incremental growth is stopped wherever we encounter a di�er-
ent model Ml with a smaller matching penalty, indicating that this model provides a better
representation of the acquired shape in that region. To evaluate this criterion we require
a mapping between candidate models, which we establish using the correspondence com-
puted in the alignment stage. For each new candidate vertex vj ∈ Mk adjacent to the current
patch boundary, we look at the corresponding point qj ∈ SP used to compute the geometric
error in Equation .. We then �nd all vertices in Ml that were mapped to points in the
vicinity of qj and compare the matching penalty of these vertices with the one at vj. If a
vertex with a smaller value is found, the triangle of vj will not be added to the patch. We
also discard this triangle if the correspondence weight vj (see Section ..) is low, indicating
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Figure .: Selecting from the warped models. Incremental region growing for segmenting
the context models.

that we have reached a hole boundary in the data.

�e growth of a patch terminates as soon as no more candidate vertices can be added,
as illustrated in Figure .. We seed the patch creation by maintaining a priority queue of
all samples pi ∈ P with high con�dence (we use the top  of samples in all our examples)
that have not yet been visited. �e queue is sorted according to decreasing con�dence ci

such that samples with high con�dence will be used �rst to initiate a new patch. �e region
growing is terminated once the queue is empty.
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4.6 Blending

�e segmentation of the warped context models provides a suitable representation of the
scanned object in regions of high data con�dence. To �ll in parts where no reliable samples
could be acquired, we need to extrapolate geometric information from the context patches.
Filling holes is straightforward if only one candidate model covers the entire boundary of
a hole. For example, the hole on the top of the creamer’s handle is entirely enclosed by a
single patch from the warped cup model (see Figure .). We can thus simply copy and
paste the corresponding surface part of that model. �e situation is more complicated when
two or more models meet at a hole boundary. Copying and pasting parts of each model will
not yield a consistent surface, since the candidate models do not agree away from the input
data. Even if a cut along an intersection curve can be found, an unnatural crease might be
created that causes visual artifacts. To address this issue we propose an incremental blend-
ing method illustrated in Figure .. Starting from the initial patch layout computed in the
segmentation stage, we successively add samples to the input data by copying vertices from
the patch boundaries of the segmented context models. �ese newly added sample points
represent the continuation of the data surface at a hole boundary, as suggested by the best
matching model in that region. We then re-compute the warping function for all retrieved
databasemodels to conformwith this enhanced point set. Since the previous alignment pro-
vides a very good initial guess, only a few iterations of the optimization are required. A
er
updating the alignment, we enlarge the context patches using the region growing algorithm
described above. We repeat this procedure until the patch growing terminates, indicating
that all the holes have been closed.

Stitching. �e patch layout now provides the necessary pieces to compose the �-
nal model. We enlarge each patch by adding triangles along the patch boundary to create
a smooth and seamless transition between adjacent patches. We achieve this blend by ap-
plying the same optimization as in the non-rigid alignment stage described in Section .,
except that we do notwarp themodels towards the input point cloud, but towards each other.
Consider the example shown in Figure .. As shown on the le
, the two patches from the
vase and the cup do not match exactly in the region of overlap. We therefore compute a
warping function T1 that aligns the vase with the cup and a warping function T2 that aligns
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Figure .: Blending. Top row from le
 to right: Two patches from di�erent models meet at
a hole boundary, new sample points are added from the model with lower shape matching
penalty, bothmodels are re-aligned with the enhanced point cloud and patches are enlarged.
�e top image shows a D illustration of the warped context models, the bottom image
shows the current patches. Bottom row: Segmentation before and a
er blending. Back-
facing triangles are colored.

the cup with the vase, and apply half of each transform to the corresponding model. A few
iterations of this process create a conforming overlap region between the two patches. We
then use the stitching method of [TL] to obtain a single manifold surface.

4.7 Results and Discussion

We have tested our model completion pipeline on a number of acquired data sets with sig-
ni�cantly di�erent shape characteristics. All examples contain large, complex holes due to
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Figure .: Stitching. From le
 to right: Initial con�guration, two intermediate steps of
alignment, �nal stitched model.

occlusions, grazing angles, or specular re�ections. Repairing these models without context
information from the database would require substantial manual intervention using geo-
metric modeling tools, since model completion techniques based on smooth extrapolation
would not be able to create a consistent model. Figure . shows the �nal reconstruction
of the co�ee creamer example. Note how the characteristic features of the model are faith-
fully recovered and di�erent parts of the two database models are blended in a natural way
without any visual seams. �e deformation of the context models even captures the spout,
which is not present initially in any of the two models. However, in regions of insu�cient
input data, e.g., around the rim or at the top of the handle, the reconstructed model clearly
exhibits characteristics of the context models. Apart from specifying optimization parame-
ters and keywords for the textual search, this example requires no further user interaction.
In particular, no feature points need to be speci�ed to guide the alignment process. �is
leads to an overall processing time of less than two minutes.

Figure .: Reconstructed co�ee creamer. From le
 to right: Physical model, acquired data
set, reconstructed model.
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�e acquired gira�e data set of Figure . has been completed with parts of the horse,
camel, and lion. A
er computing the non-rigid alignment using  manually speci�ed fea-
ture correspondences, the automatic segmentation and blending methods create a faithful
reconstruction of the gira�e model. �is example clearly demonstrates the advantages of
combining context information from di�erent models, since a satisfactory shape completion
could not be obtained from any of the deformed context models alone. Figure . illus-
trates how shape completion is continuously simpli�ed by enriching the database with al-
ready acquired and consolidated models. �e two gira�es are completed using the model of
Figure . as a context model. Even though the input data is noisy and consists of multiple,
imperfectly aligned scans, a high-quality reconstruction is obtained.

Amore complex example is shown in Figure .. �e input data is a single range image
that contains large, complex holes due to occlusion. �e two pillars shown in  and  are
used as context models to repair the highly incomplete lower sections of the wall. �e panels
on the ceiling are completed successively using multiple iterations of our pipeline. �e �rst
panel on the lower le
 is repaired using a simple plane as a geometric prior. �e consolidated
panel is then used to �x the other panels in this arch. Once the whole arch is completed, it
can be extracted to be used as a context model for the right arch. Note that the panels are
not exact copies of each other, so simple copy and paste operations will not yield adequate
results. User assistance is required to select appropriate parts in the data that can be used as
context models for other regions, and to provide an initial alignment for those parts using
four feature correspondences per piece. Interaction time for a trained user is less then half
an hour, compared to multiple hours that would be required with standard modeling tools.

Additional Constraints. �e shapematching penalty de�ned in Section . only con-
siders low-level geometric properties to determine the warping function for non-rigid align-
ment. However, many models have speci�c high-level semantics that are not considered in
this measure. For example, certain models exhibit symmetries that should be preserved by
the warping function. As shown in Figure ., we can adapt the alignment by adding ap-
propriate constraints in the optimization. Another typical example is articulated models,
where deformations that describe rotations around joints should be penalized signi�cantly
less than ones that result in a bending of rigid parts of the skeletal structure. �is can be
achieved by using a full kinematic description of the context models to adjust the matching
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Figure .: Shape reconstruction from low-quality data. From le
 to right: Physical model,
acquired data set, reconstructed model.

penalty function accordingly.

Evaluation. A distinct advantage of our method is that it not only provides a �nal
consolidated surface mesh, but also allows a local evaluation of the quality of the recon-
structed model. We can easily identify regions where no adequate shape completion can be
obtained, either because no valid correspondence between input data and context models
can be established, or because the distortion of the warping function is too high to provide
a meaningful shape prior for the acquired data. �e zoom of the gira�e’s head shown in
Figure . depicts a case where our method does not recover a semantically correct shape,
since the horns of the gira�e are not present in any of the context models and the data set is
incomplete in this region. In such cases, the user either needs to acquire more data, enrich
the database by providing more suitable context models, or manually edit the �nal model.

Limitations. Our context model retrieval relies on textual queries, which requires a
well annotated shape database. �is is particularly important for models that only provide
partial completions in a certain region of the input data, but disagree greatly in other parts.
Pre-segmentation of databasemodels can simplify the retrieval of partiallymatching shapes,
but requires a substantially more involved database search.

Similar to [ACP] and [SP] we control the distortion of the warping function when
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input data context model �nal model evaluation

Figure .: Evaluating the �nal completed shape. �e color-coding in the right image shows
the shape matching penalty, where red color indicates insu�cient surface completion due
to invalid correspondence between input data and context models.

computing the non-rigid alignment, not the shape of the deformed model. �us we can
make no guarantees that the warped model is free of self-intersections. We discard a con-
text model when we detect such a case, yet constraining the deformation to prevent self-
intersections might be a more adequate solution. �e distortion measure that controls the
smoothness of the warping function is isotropic, i.e., penalizes distortion equally in all ra-
dial directions. If the acquired model has a high-frequency detail, e.g., a sharp crease, that
is not present in the context model, the weight on the distortion measure needs to be low

context models

deformed models �nal modelinput data 

physical model segmentationphysical model

Figure .: Shape completion zoo. Horse, camel, and lion are deformed, segmented and
blended to yield the �nal shape of the gira�e.
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Figure .: Completion of a single range image acquired in the Galleria dell’Accademia in
Florence. Context models, shown in brown, are either retrieved from the database or ex-
tracted by the user from already completed parts of the model. �e David model has been
added for completeness.

(i.e., α has to be close to one in Equation .), so that the warped context model can be
aligned to this geometric feature. �is, however, will also pick up noise present in the input
data, as can be observed in Figure .. A solution could be to design an anisotropic shape
matching penalty that locally respects that characteristics of the input geometry, similar to
anisotropic low-pass �lters used in data smoothing. �e blending method of Section .
requires consistent topology of the context models in regions where two or more models

no constraints symmetry constraintscontext modelphysical model acquired data

Figure .: Symmetry constraints for shape completion. Symmetry constraints yield a se-
mantically more adequate shape completion. �e warping function for the model on the
right has been constrained to be symmetric with respect to the semi-transparent plane
shown in the center.
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are blended. We detect topological mismatches from inconsistencies in the correspondence
between di�erent models, and exclude the model with higher shape matching penalty from
the blending stage in this region. We can give no guarantees, however, that this heuristic al-
ways produces the correct shape topology. We thus also allow the user to manually discard
individual models, if the topology is inconsistent, which provides more explicit control of
the semantics of the consolidated shape.

4.8 Summary

In this chapter, we presented an example-based shape completion framework for acquired
D surface data. Shapes from the database are deformed to �t the data. We employ an adap-
tive segmentation of the warped context models, which can then be blended consistently
using incremental patch growing and continuous re-alignment, to yield the �nal consoli-
dated shape representation. Our method is robust against noise and outliers and provides a
quantitative evaluation of the quality of the produced output model.

So far in this thesis, we demonstrated how to quickly and e�ciently acquire geometry of
an object by scanning it frommultiple directions and stitching the scans togethers. Regions
of missing data are �lled using geometric priors from database shapes. We also introduced
several algorithms that are also applicable to a large variety of other geometry processing
applications. Some of our techniques have already been used by others for solving related
problems [Kol, HFG+, PHYH, PGSQ, BGK, LBG, EDK, HSW, FS].

In the next part of the thesis, we investigate algorithms for analyzing global properties
of D geometry.
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Shape Analysis
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In the �rst part of the thesis, we proposed several improvements for the shape acquisition
pipeline — a branch and bound approach for determining a rough initial alignment for a
pair of shapes, Gauss-Newton optimization for �ner alignment of the shapes, and �nally
using geometric priors in the form of a model database to �ll in regions of missing data.
In short, we can quickly and e�ciently scan an object in multiple sections, and stitch the
scans together to get a consistent geometric representation of the object. Subsequently we
can use state-of-the-art modeling tools to edit and deform existing models to generate novel
D geometry.

At this stage we have little high level understanding of the underlying shape. In most
cases, lack of high level shape understanding, forces us to store lot of redundant data and
we end up processing the data ine�ciently. Gaining a better understanding of the shapes,
not only gives us a more compact shape representation, but more importantly, enables us
to perform geometry processing in time proportion to the complexity of the model and
independent of the resolution of the model. As we will see in subsequent chapters, the un-
derstanding we gained in the previous chapters helps us in our subsequent goal of shape
analysis.







5
Partial and Approximate Symmetry

Detection

Beauty depends on size as well as symmetry.

— Aristotle

In this chapter, we present a new algorithm [MGP] that processes geometric models
and e�ciently discovers and extracts a compact representation of their Euclidean symme-
tries. Not surprisingly many of the techniques from previous chapters are used since sym-
metry detection is essentially partial shape registration of a shape with itself modulo the
identity transform.

5.1 Introduction

Symmetry is an essential and ubiquitous concept in nature, science, and art. For exam-
ple, in geometry, the Erlanger program of Felix Klein [Kle] has fueled for over a century
mathematicians’ interest in invariance under certain group actions as a key principle for
understanding geometric spaces. Numerous biological, physical, or man-made structures
exhibit symmetries as a fundamental design principle or as an essential aspect of their func-
tion. Whether by evolution or design, symmetry implies certain economies and e�ciencies
of structure that make it universally appealing. Symmetry also plays an important role in


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0.02-0.02

Figure .: Symmetry detection on a sculpted model. From le
 to right: Original model, de-
tected partial and approximate symmetries, color-coded deviations from perfect symmetry
as a fraction of the bounding box diagonal.

human visual perception and aesthetics. Arguably much of the understanding of the world
around us is based on the perception and recognition of shared or repeated structures, and
so is our sense of beauty [�o].

In this chapter we present a novel method for detecting meaningful symmetries in dig-
ital D shapes. We understand symmetry as invariance under a set of transformations —
in our case translation, rotation, re�ection, and uniform scaling, the common generators
of the Euclidean group. �e �gure below shows a D illustration. As can be seen in this
example, symmetries or congruences that are quite apparent to us can be approximate and
occur at di�erent scales. Our goal is to de�ne an algorithm that extracts (partial) symme-
tries at all scales, including approximate or imperfect symmetries of varying degree. �is
allows the user to select the subset of symmetries that are most meaningful for a speci�c ap-
plication. Examples include scan registration and alignment, shapematching, segmentation
and skeleton extraction, compression, advanced modeling and editing, and shape database
retrieval.

re�ection re�ection + rotation + translation scale + rotation + translation

To achieve this goal, we separate the symmetry computation into two phases: In the �rst



.. introduction 

step, we compute simple local shape descriptors at a selected set of points on the shape.
�ese descriptors are chosen so that they are invariant under the group actions of interest.
We use these local descriptors to pair up points that could be mapped to each other under
a candidate symmetry action. We think of each such pair as depositing mass, or voting,
for a speci�c symmetry in the transformation space of interest. In this space, pairs with
similar transformations formclusters that provide evidence for the corresponding symmetry
relation.

In the second step we use a stochastic clustering algorithm to extract the signi�cant
modes of this mass distribution. Since the mapping to transformation space does not pre-
serve the spatial coherence or structure of samples on the input shape, we verify whether a
meaningful symmetry has been found by checking the spatial consistency of the extracted
subparts of the surface. Our clustering method provides the necessary surface correspon-
dences, since every point mass in transformation space corresponds to a candidate pair of
points in the spatial domain. �us only a small set of candidates samples needs to be consid-
ered when detecting and extracting symmetric surface patches, avoiding a costly quadratic
spatial search over the whole input data set.

�is separation into two stages is crucial for the e�ectiveness of our algorithm. �e un-
derlying observation is the following: given a proposed symmetry relation, it is simple and
e�cient to verify whether this speci�c symmetry is present in the model; we just need to
apply the symmetry transform and check whether the model is mapped onto itself, or a
sub-part of the model is mapped to a corresponding sub-part. However, the number of all
potential mappings is by far too large to do an exhaustive search. �erefore, we �rst accu-
mulate statistical evidence for which symmetries are present via our clustering in transfor-
mation space. Only if this evidence is su�cient do we perform spatial veri�cation to check
whether a speci�c symmetry is actually valid. �us the complexity of symmetry extraction
depends primarily on the number and size of relevant symmetries present in the model and
not on the complexity of the model itself or that of the underlying symmetry group. As part
of our approach, we can provide a quantitative measure on the “exactness”, or saliency, of
a symmetry relation, which allows the user to control the degree of perfection in the ex-
tracted symmetries. In addition, by specifying the size of the set of local shape descriptors,
the user can trade accuracy for computational e�ciency. While fewer samples are su�cient
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for detecting large global symmetries, small partial symmetries require a signi�cantly denser
sampling.

�e �nal output of our algorithm is a “symmetry graph” of the object, which encodes
the signi�cant symmetries of the object, each described by a patch pair and the correspond-
ing transformation between them. For objects that contain regular repeated structures, like
windows or doors in architectural models, we can recover the symmetries of the repetition
pattern through a basis reduction algorithm. �is in e�ect leads to a sparser and more in-
formative symmetry graph that contains only fundamental symmetry generators and avoids
encoding separately symmetries that are just products of already recorded symmetries. �is
kind of repeated pattern discovery can be useful in consistent mesh editing applications.

5.2 RelatedWork

�e problem of symmetry detection has been extensively studied in numerous �elds in-
cluding visual perception, computer vision, robotics, and computational geometry. Early
methods concentrated on �nding perfect symmetries in D or D planar point sets [Ata],
[WWV]. Since the restriction to exact symmetries limits the use of these methods for
real-world objects, Alt et al.[AMWW] introduced a method for computing approximate
global symmetries in D point sets, but the complexity of the algorithmmakes it impractical
for large data sets. Zabrodsky et al. [ZPA] formalized the notion of approximate symme-
try by expressing symmetry as a continuous feature. Sun et al. [SS] proposed to examine
the correlation of the Gaussian image to recover global re�ective and rotational symmetries.
Kazhdan and co-workers [KCD+] introduced a shape descriptor that concisely encodes
global re�ective symmetries. Later they extended this work to rotational symmetries and
used it for shape retrieval for database matching in [KFRb].

Our method bears some similarity to the Hough transform, a popular feature extraction
method mainly used in image processing [Hou]. Starting from a set of sample points
obtained using edge detection, the method repeatedly selects small subsets of these samples
to estimate the parameters of the feature curve. Analogous to our approach, votes cast by
all of these estimates are accumulated and the �nal feature curve is extracted based on the
majority of votes. Recently ideas based on the Hough transform have been used by [LE]
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to detect re�ective and rotational symmetries in images.
�e RANdom SAmple Consensus (RANSAC) method proposed by Fischler and Bolles

[FB] is an algorithm for robustmodel �tting for data containingmany outliers. In the con-
text of shape matching the basic idea is to choose a random set of corresponding samples on
the query and target shapes, apply the global transformation induced by these samples, and
evaluate thematching error between the two shapes. If su�cientlymany transformations are
explored in this way, the relevant symmetries can eventually be determined. Since the evalu-
ation of thematching error requires costly spatial proximity tests, geometric hashing [LW]
pre-computes all possible alignments by densely sampling the space of transformations and
storing the resulting shape distribution in a hash grid. Gal and Cohen-Or [GCO] recently
presented an e�ective method for shape matching based on this idea. �eir algorithm com-
putes local shape descriptors that are grouped to form salient shape features. Using an em-
pirical saliencymeasure, shape features are then used to pre-compute a geometric hash table
that allows e�cient partial matching.

While sharing some similarities, our method is fundamentally di�erent from both geo-
metric hashing and RANSAC. We avoid the costly exhaustive search of the former by com-
puting the matching error of a transformation only a
er we accumulate su�cient evidence
for a symmetry. At the same time our method requires minimal storage, in contrast to ge-
ometric hashing, where hash tables of up to . GBytes have been reported for complex
geometric shapes [GCO].

Contributions

We propose a new algorithm for pairing sample points on D shapes with compatible local
descriptors to generate a distribution in transformation space whose peaks capture relevant
symmetries of the object. We show how a stochastic clustering algorithm over this distri-
bution detects potential symmetry candidates, and provide a surface patching method that
extracts a reduced symmetry graph from the extracted clusters. Our algorithms can be ap-
plied to D models of di�erent shape characteristics and representations. Memory require-
ments are minimal and the computation is output-sensitive in the sense that its complexity
depends mainly on the number and extent of symmetries actually present in the object. In
addition, we provide theoretical bounds on the success rate of our algorithm as a function
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Figure .: �e symmetry extraction pipeline. Sampling yields a set P of surface points. For
each pi ∈ P a local signature is computed. Points pi, pj with similar signatures are paired and
a point in transformation space Γ is computed mapping the local frame of pi to the one at
pj. Clustering in Γ yields subsets of P that remain invariant under a certain transformation,
which can be extracted using spatial region growing.

of the number of initial samples selected. �ese results indicate that the algorithm can be
e�ective even for very large models that cannot �t in main memory.

5.3 Overview

We �rst give some intuition for our method by looking at the D example shown in Fig-
ure ., where the goal is to detect re�ective symmetries of the butter�y. Any pair of points
(p, q) on the boundary of the model de�nes a unique re�ection with respect to the bisector
line through (p + q)/2 with normal direction p−q. Hence such a pair can be understood as
evidence for the existence of this speci�c re�ective symmetry. By looking at all such pairs we
can accumulate this evidence and extract the relevant symmetry relation(s). Only if many
point pairs agree on (roughly) the same re�ection line, do we have reason to believe that the
corresponding symmetry is truly present in the model. �us we can detect potential sym-
metries by looking at clusters of points in the space of transformations Γ, where each point
corresponds to a speci�c re�ection line. However, as shown in the illustration, the evidence
of a single point pair is only reliable if the local geometry around the points is faithfully mir-
rored by the re�ective transformation. �is observation will allow us to signi�cantly prune
the set of all point pairs and avoid an exhaustive computation on a quadratic number of
point pairs.

Since the mapping to Γ does not incorporate the spatial position of surface samples,
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pairs from unrelated parts of the object can be mapped to the same point in transforma-
tion space. �us in a second phase we extract spatially coherent components of the model
that are invariant under the extracted symmetry transformations. Using the point pair cor-
respondences present in the cluster, we perform an incremental region growing algorithm
to verify a speci�c symmetry. Figure . gives a high-level overview of our symmetry ex-
traction pipeline. �e following sections will elaborate on the individual stages and provide
details of our approach.

φ

d

transformation space

Γ

Figure .: Illustration of symmetry detection for re�ections. Every pair of points de�nes
a symmetry line l that can be described by a distance d and an angle φ. Multiple points
clustered in a small region in transformation space provide evidence of a symmetry. �e
pair on the top le
 is discarded due to normal inconsistency.

5.4 Signatures and Transformations

We consider the Euclidean transformation group generated by translations, rotations, re�ec-
tions, and uniform scalings. Our goal is to �nd parts of a given D shape that are invariant
under transformations in this symmetry group or some lower-dimensional subgroup.

In order to apply the ideas sketched above, we need to compute the transformation Tij

that maps a point pi on the surface of the model to another point pj. While point positions
are su�cient for de�ning a unique plane of re�ection as in the example above, we cannot
determine all degrees of freedom of a general Euclidean transform from the spatial positions
alone. We therefore compute geometry signatures at each sample point pi based on the
concept of normal cycles [CSM]. We apply the algorithm proposed in [ACSD+] to
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approximate the curvature tensor at pi within a sphere of radius r and compute integrated
principal curvatures κi,1 ≤ κi,2 and principal directions ci,1 and ci,2. �e radius r should
be on the order of the local sample spacing to achieve su�cient averaging when computing
the curvature tensor and avoid a strong dependence on the speci�c location of the sample
points.
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�e principal directions de�ne a local frame (ci,1, ci,2, ni), with normal vector ni = ci,1× ci,2.
We orient this frame as a right-handed coordinate frame that aligns with the outward point-
ing surface normal by �ipping signs of the appropriate vectors if necessary. In order to ob-
tain a canonical rotational component Rij of the transformation Tij we �rst align the two
normals along their common plane and then pick the smaller of the two rotations around
the normal that aligns to one of the two possible choices of orientation in tangent space.
�e uniform scale component of Tij is estimated from the ratio of principal curvatures
as sij = (κi,1/κj,1 + κi,2/κj,2)/2, the translation is computed as tij = pj − sijRijpi. For
a given pair (pi, pj) we thus obtain a point in -dimensional transformation space Γ as
Tij = (sij, Rx

ij, Ry
ij, Rz

ij, tx
ij, ty

ij, tz
ij), where Rx

ij, Ry
ij, Rz

ij are the Euler angles derived from Rij and
tij = [tx

ij ty
ij tz

ij]
T. In order to handle re�ections, we also compute the transformation

obtained when re�ecting the model about an arbitrary but �xed plane.

5.4.1 Point Pruning

A di�erential surface patch at umbilic points, i.e., those for which κi,1 = κi,2, is invariant
under rotations around the surface normal. Pairs involving such points and their signatures
do not de�ne a unique transformation, but trace out curves in transformation space, which
may quickly camou�age meaningful symmetry clusters. To avoid clutter in transformation
space, we discard these points from the sample set, i.e., we only consider points on the surface
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with distinct principal curvatures (and hence stable principal directions), which give rise to a
unique transformation when paired with another compatible point. Apart frommaking the
symmetry clustering more robust, point pruning has the additional advantage of reducing
computation time. We obtain the adaptive sample set by applying a threshold γ < 1 on the
ratio of curvatures: pi ∈ P, if |κi,1/κi,2| < γ. We use γ = 0.75 for all examples in this work.

5.4.2 Pairing

Given the reduced set of surface samples P and their signatures, we can now compute trans-
formations for pairs of points in P. We select a randomsubset P′ ⊂ P and�nd all pairs (p′, p)

with p′ ∈ P′ and p ∈ P that provide evidence for a symmetry relation. In the Appendix we
give theoretical bounds on the size of P and P′ required to successfully �nd symmetries of a
certain size.

As indicated above, the evidence of a selected point pair for a speci�c symmetry relation
is only reliable, if a local surface patch around each point is invariant under a transformation
from the considered symmetry group G. In the D illustration of Figure ., for example, we
can reject a pair, if the curvature estimates at both points di�er too much, since curvature
is invariant under re�ection. To obtain an e�cient pairing algorithm we map all samples to
a signature space Ω and use the metric of that space to estimate the deviation from perfect
invariance. Only point pairs that are close in Ω are considered as suitable candidates for a
local symmetry relation, which avoids an exhaustive computation of a quadratic number of
point pairs.

For the full -dimensional Euclidean group in D, the mapping from P to Ω7 = R is
given as σ7(pi) = κi,1/κi,2, since uniform scaling, rotation, and translation leave the ratio of
principal curvatures unchanged. �e sub-index 7 indicates the dimension of the symmetry
group. For purely rigid transforms, we de�ne σ6(pi) = (κi,1, κi,2)with Ω6 = R2. We can now
for a given sample pi ∈ P′ determine all suitable partners in P by performing a range query
inΩ. Using standard spatial proximity data structures, e.g., a kd-tree, we can performpairing
in O(n′ log n) time, where n = |P| and n′ = |P′|. If only re�ections and/or translations are
considered, we can additionally reject pairs based on the orientation of the local frames, as
illustrated in Figure ..
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Figure . shows that pruning not only reduces the complexity of the clustering algo-
rithm, but, even more importantly, avoids clutter in transformation space. By focusing only
on locally consistent symmetry pairs, meaningful clusters are stably detected in Γ.

5.5 Clustering

�e pairing computed in the previous stage provides us with a set of transformations that
map local surface patches onto each other. Each pair thus provides evidence for a symmetry
relation at the level of the local sample spacing. To extract meaningful symmetries at larger
scales we need to accumulate this local evidence, i.e., �nd groups of pairs with a similar
transformation that correspond to symmetric subsets of the model surface. �is requires
the de�nition of a distance metric in Γ, which is non-trivial, since scaling, rotation, and
translation need to be combined in a single metric. We follow the approach of [ABD+]
and de�ne the norm of a transformation T = (s, Rx, Ry, Rz, tx, ty, tz) ∈ Γ as the weighted
sum ‖T‖2 = β1s2 + β2(R2

x + R2
y + R2

z) + β3(t2
x + t2

y + t2
z). �e weights βi allow to adjust the

relative in�uence of the individual components of the transformation. In all our examples
we set these weights so that a rotation by 180 degrees corresponds to a displacement of half
the bounding box diagonal and a scaling factor of 10. A metric for Γ can then be derived
as d(T, T′) = ‖T− T′‖, where the subtraction is component-wise, see also [HPR] for a
detailed discussion.

5.5.1 Mean-Shift Clustering

If the symmetries in the model are perfect (and the sampling includes point pairs that are
perfectly symmetric), then all pairs of the same (discrete) symmetry relation map to a sin-
gle point in Γ. Many real-world objects exhibit approximate symmetries, however, and the
sampling will not be precisely symmetric in general. We thus need a method to �nd clusters
in transformation space. When looking at the distribution of points in Γ, we immediately
see that standard parametric clustering methods, such as k-means clustering, are not suit-
able for our purposes. In general we have no a priori knowledge on the number of (partial)
symmetries of the input model, i.e., selecting k would be di�cult. Furthermore, clusters
are not necessarily isotropic, especially for approximate symmetries like the ones shown in
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Figure .. A more suitable clustering method is mean shi
 clustering, a non-parametric
method based on gradient ascent on a density function ρ [CM]. Mean shi
 clustering
has also been used in [JT] for skinning mesh animations and in [TSM] for D motion
estimation. �is density function is de�ned as a sum of kernel functions K centered at each
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Figure .: Point pair pruning.  samples on the butter�y lead to (40
2 ) = 780 points in trans-

formation space. Pruning based on curvature reduces the set to  points, while addition-
ally normal-based pruning yields  points. �e density plots show how the meaningful
symmetry clusters become signi�cantly more pronounced.
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point Ti in Γ as
ρ(T) = ∑

i
K(‖T− Ti‖/h).

We use the radially symmetric Epanechnikov kernel with bandwidth h as suggested in
[CM]. �e signi�cant modes of ρ are determined using gradient ascent. All points that
�ow into a local maximum of su�cient height are considered samples of a signi�cant cluster
Ck. �e corresponding symmetry transformation Tk is then de�ned by the cluster’s maxi-
mum. Essentially, the algorithm can be understood as a voting scheme: Every point pair
votes for the symmetry relation that has been extracted from its local frames. If many votes
are cast for the same symmetry, a local peak is created in the accumulated density function.
For more details on mean-shi
 clustering we refer to [CM].

5.6 Verification

A signi�cant mode detected by the mean-shi
 clustering algorithm does not necessarily
correspond to a meaningful symmetry. Since the spatial relation of sample points is lost
during the mapping to transformation space, sample pairs from uncorrelated parts of the
object can accumulate to form discernible clusters. �e e�ectiveness of our method is based
on the observation that statistically such spurious modes are rare (see also the analysis in
the Appendix): It is highly unlikely that many uncorrelated point pairs agree on the same
transformation, i.e., are mapped to the same point in D transformation space. We can
thus a�ord to perform a spatial veri�cation for each cluster Ck by extracting the connected
components of themodel that are invariant under the corresponding transformation Tk. We
compute these surface patches using an incremental patch growing process, starting with a
random point of Ck, which corresponds to a pair (pi, pj) of points on the model surface.
Now we look at the one-ring neighbors of pi, apply Tk, and check whether the distance of
the transformed points to the surface around pj is below a given error threshold. If so, we add
them to the current patch. We keep extending this patch along its boundary until no more
points can be added. During the growth process, we mark all visited samples on the surface
and remove points in Ck that correspond to these samples. �is process is then repeated
using the next point in Ck until all points have been considered.
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Since the transformation Tk at the cluster’s maximum does not necessarily provide the
best possible transformation for matching the surface patches, we incrementally re�ne Tk

during the patch growing using the iterated closest points (ICP) algorithm [RL]. �e nor-
malized residual of the ICPmatching then provides a quantitative measure for the exactness
of the symmetry [MGPG]. Other measures, such as the Hausdor� distance can also be
used. We end up with a collection of pairs of patches on the model surface that are mapped
onto each other by the cluster’s transformation Tk. �is information can be encoded in a
weighted graph, where each node corresponds to a patch and each edge denotes the trans-
formation that maps two patches onto each other, weighted by the matching error.

5.6.1 Compound Transforms

Many geometric objects exhibit symmetries in a structured or repetitive fashion resulting in
a large number of clusters in transformation space [LCT]. Encoding all pair-wise sym-
metry relations for such models leads to a complex and highly redundant symmetry graph
and thus a costly veri�cation stage. In this section we describe a simple basis reduction al-
gorithm that computes a compact set of generators for all detected symmetries in transfor-
mation space [MKS]. �is signi�cantly reduces the number of spatial consistency checks
required for veri�cation and yields a more informative symmetry graph that supports ad-
vanced editing operations and high level shape comparisons.

�e algorithm shown below takes as input all extracted symmetry transformations T

sorted in descending order of cluster height and iteratively processes each transformation
Ti ∈ T. During execution we maintain an alphabet A of generators and the language L

that encodes T in terms of the alphabet A. A user parameter η controls the complexity of
the algorithm by limiting the search to loops of length η + 1. �e threshold δ measures the
allowed deviation from the exact transformation.

Figure . shows an example of a reduced symmetry basis. Veri�cation can now be ap-
plied more e�ciently on the set L of compound transformations. For more details on basis
reduction we refer to [MKS].
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Figure .: Symmetry graph reduction. Symmetry graph reduction for a model with struc-
tured symmetries at two di�erent scales.  signi�cant modes have been extracted in the
clustering stage. �e reduced basis contains  transformations, as indicated by the arrows.
�e graph on the le
 shows the number of detected symmetries as a function of random
samples in the subset P′ ⊂ P.

5.7 Results and Applications

We have implemented the pipeline sketched in Figure .. An initial sample set is cre-
ated by uniformly sampling the input model. A
er computing signatures using the method
of [ACSD+], point pruning yields the reduced sample set P. We then select a random sub-
set P′ ⊂ P, �nd all suitable pairs (p′ ∈ P′, p ∈ P) based on the proximity in signature space,
and compute the corresponding transformations. We perform mean-shi
 clustering using
the method proposed in [AMN+] to e�ciently compute neighborhoods in D transfor-
mation space. Basis reduction and veri�cation �nally yield the symmetric patches. We show
in the Appendix that ourmethod is guaranteed to �nd existing symmetry relations provided
the sampling is dense enough with respect to the size of the symmetric patches. �e follow-
ing examples verify this claim and demonstrate that practical results can be obtained even
if the theoretical sampling requirements are not met.
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Algorithm  Symmetry basis reduction.
Input: T = {T1, T2, . . . , Tn}
A← {I}
L← ∅

for i = 1 to n do
if ∃ (A1, . . . , Aη) with Aj ∈ A s.t. |Ti −∏

η
j=1 Aj| ≤ δ then

L← L ∪ {(A1, . . . , Aη)}
else

A← A ∪ {Ti, T−1
i }

L← L ∪ {(Ti)}
end if

end for

Figure . shows partial and approximate symmetry detection on a laser scan of a hand-
sculpted model. �e dragon has been sampled with  points out of which  have been
randomly selected to extract the �ve most signi�cant modes. �e deviations from perfect
symmetry are visualized as the signed distances to the closest point on the perfectly symmet-
ric patch. Since these displacements can be compactly encoded, a compressed representation
of the surface can be computed based on the extracted symmetry graph.

Figure . shows an example using the full -dimensional symmetry group composed
of uniform scaling, rotation, re�ection, and translation. All major symmetries are faithfully
recovered from only  random samples, drawn from an initial sample set of  points.

Figure . shows a complex architecturalmodelwith symmetries atmanydi�erent scales.
�e model has been sampled with  points out of which  points (black spheres) and
 points (yellow spheres) where randomly chosen leading to  and  points in Γ,
respectively. For visualization purposes we project the samples in transformation space to
D using metric multi-dimensional scaling [CC] as shown in (b). Note that the elliptical
structures are due to errors caused by this projection. �e two biggest modes map to the
symmetries shown on the right, where the perfect global symmetry is faithfully recovered
from only  random samples. Automatic model reduction and instantiation is shown in
(c). Using the �rst eight signi�cant modes, a reduction to only 14% of the original model
size is achieved by taking out the corresponding symmetric patches. �e resulting bounding
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Figure .: Sydney opera house. �e six most signi�cant modes of the Sydney Opera with
the full -dimensional symmetries (, , ) and pure re�ections (, , ). �e graph shows
the distribution of scaling factors.

box hierarchy shown in the lower right corner supports e�cient spatial queries for applica-
tions such as ray-tracing or collision detection directly from the reduced geometry and the
corresponding symmetry relations. In (d) we utilized the extracted symmetries to perform
advanced editing operations. �e user can select a speci�c symmetry relation and modify
certain parts of the model. �e system will then automatically apply these modi�cations to
all corresponding patches to maintain the original symmetry.

Figure . illustrates an application of our method for segmentation. Two poses of the
horse have been sampled with  points. We then selected  random points on pose A
and paired these with samples from pose B, as shown in (d). �e mapping to transformation
space is thus restricted to only include pairs that contain one sample from either pose. We
can then extract the rigid segments of the model as those parts that are invariant under a
rigid transformation between the two poses (e). �e projected density function is shown
in (b). �e biggest modes on the le� correspond to the torso and head of the horse. �e
plot on the right is obtained a�er removing these parts from the model and adding 
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Figure .: Chambord castle. (a) input model with random surface samples drawn from a
total of  samples, (b) points in transformation space projected to D and associated
density plots; the symmetries corresponding to the biggest two modes are shown on the
right, (c) successive reduction by taking out symmetric patches and resulting bounding box
hierarchy, (d) advanced editing using the extracted symmetry relations.
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Figure .: Segmentation and correspondence for the horse model in two di�erent poses.
(a) sampling distribution on both poses, (b) projected density plots, (c) extracted segments
and veri�cation e�ort, (d) sample pairing, (e) segmentation using our method, (f) segmen-
tation obtained with explicit, exact point correspondences.
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additional samples to the set of random points. Note that in the D transformation space
clusters are signi�cantly better separated than in the projected D space. As shown in (c),
only few clusters have to be discarded in the veri�cation stage. �e image in (f) shows the
result obtained when using the explicit and perfect one-to-one correspondence available for
this speci�c example, i.e., each vertex is paired with exactly one vertex on the other pose
(see also [JT]). �is example illustrates that our method can be used to compute a global
correspondence map for articulated models without requiring any user-speci�ed marker
points. Potential applications include partial scan registration and skeleton extraction.

�e performance data of Table . indicates how the computation depends on the sym-
metries of the model. �e castle has a signi�cantly more complex symmetry structure as
compared to the dragon, hence computation times are substantially higher even though the
models have roughly the same size. Note that unlike geometric hashing our method re-
quires minimal additional storage, in all our example less than  KBytes of additional
main memory were needed.

�e set of symmetries extracted by our algorithm is limited to discrete symmetries, i.e.,
ones that can be described by a discrete set of points in transformation space. Continuous
symmetries, such as those found in rotational or helical surfaces, lead to smooth curves
in transformation space and are currently not detected by our method. �is is primarily a
limitation of our clustering algorithm, which is not well suited for extracting these types of
continuous structures. Figure . illustrates this limitation in a slightly di�erent context. �e
mean-shi
 algorithm�nds twodominantmodes that correspond to the re�ections of the feet

Model  Vertices Sign. Pairing Cluster. Verif.

Dragon , . . . .

Opera , . . . .

Castle , . . . .

Horse , . . . .

Arch , . . . .

Table .: Timing Chart. Timings in seconds for the di�erent stages of the pipeline on a .
GHz Pentium IV with GBytes main memory.
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Figure .: Re�ective symmetries of a D lizard. Approximate re�ective symmetry across the
spline gets mapped to a curve in the D transformation space.

as shown in the illustration. �e global re�ective symmetry across the spine of the lizard,
however, is obscured by the deformation of the speci�c pose of the model and hence not
extracted. As the density plot reveals, this deformation is su�ciently small for the re�ection
planes to vary smoothly from the head to the tail. We can extract the corresponding curve
in D transformation space using the method proposed in [ACDH], but have not yet
extended the implementation to higher dimensions. Another limitation of our method is
inherent in the sample-based approach that we take. Although our algorithm successfully
detects the major symmetries of an object, it may fail to identify small partial symmetries
during the clustering stage due to the presence of sampling noise. In such a situation, pre-
smoothing of the model is required, or the user has to manually tune the patch radii used
for curvature estimation (see Section .), until noise is su�ciently blurred out. Naturally,
this leads to less distinct curvature estimates, which might cause the subsequent clustering
algorithm to miss less pronounced symmetries.

5.8 Summary

In this chapter, we demonstrated howmatching local shape signatures followed by clustering
in transformation space leads to a provably e�cient method for discovering and extracting
partial and approximate symmetries of D geometric models. While the algorithm is sim-
ple and inherently distributed, the randomized construction makes it suited for streaming
applications. Our approach accumulates local evidence for global reasoning which gives us
a better understanding of the object.
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Removing redundant information due to symmetries, and in the process achieving com-
pression, is di�erent from other mesh compression techniques. Our compressed mesh rep-
resentation can still be used for certain mesh deformations without ever explicitly decom-
pressing the data. We can also deform the model while respecting the original symmetries
present in the object. Intuitively we represent the object in a new basis, where the basis
shapes are chosen from the model, and are thus adaptive. While exhaustively registering
all possible orientations of an object to itself is not feasible, we show how working in the
transform domain lets us solve the problem e�ectively.

In the example of segmentation of horses in di�erent poses, we saw how to use our algo-
rithm for registration of model pairs. Subsequently we can use the obtained correspondence
to evaluate similarity between the models. However, this approach requires processing the
models in pairs to evaluate their (partial) similarity. Such an approach does not scale well to
a database of shapes where pairwise processing of D geometry is not a feasible option. In
the next chapter, we present a randomized scheme for generating compact shape represen-
tations to address this problem.
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6
Probabilistic Fingerprints

Signature always reveals a man’s character, and sometimes even his name.

— Evan Esar

In this chapter, we take a non-traditional approach to de�ne and evaluate similarity be-
tweenmultiple D shapes without explicitly bringing them in alignment. Techniques which
require extensive processing of shape pairs for evaluating their similarity are not useful when
a large number of objects are involved. Further we will like a schemewhere the cost of the al-
gorithm depends on the similarity between the shapes and also on the con�dence we desire
in our estimates.

With this motivation, we present a probabilistic framework [MGGP] for the e�cient
estimation of similarity between D shapes. Our goal is to establish correspondence across
multiple models. For this purpose we need to consistently identify some points across mul-
tiple models. However, we do not require the points to be special or feature points – these
points need not have any visual signi�cance. We demonstrate how a carefully designed
randomized selection gives us a small set of points with good correspondence. �e ideas
presented in this chapter not only are useful for shape alignment, but gives us a versatile
technique for solving a variety of geometry processing problems.

We propose a suitable but compact approximation based on probabilistic �ngerprints
which are computed from the shape signatures using Rabin’s hashing scheme and a small


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Figure .: Fingerprint generation. We �rst cover an object with ρ-radius balls spaced δ apart
with ρ  δ. �e intersection of each ball with the surface de�nes a shingle. For each shingle,
we compute a descriptor, spin-image in this case, which is hashed using Rabin’s scheme.
�en, in the min-hashing phase, according to m random permutations, we select a small
subset of descriptors and store them as the probabilistic �ngerprint.

set of random permutations. We provide a probabilistic analysis that shows that while the
preprocessing time depends on the complexity of the model, the �ngerprint size and hence
the query time depends only on the desired con�dence in our estimated similarity. Our
method is robust to noise, invariant to rigid transforms, handles articulated deformations,
and e�ectively detects partial matches.

6.1 Introduction

We are primarily interested in the following question: Given two shapes in arbitrary poses,
how can we meaningfully de�ne their similarity and evaluate it e�ciently? For database
applications, o�-line pre-processing of each shape is typically acceptable, if it results in fast
query handling. In the same context, it is important to determine, quickly and reliably, when
two shapes are dissimilar.

In this chapter, we propose an e�cient method to de�ne probabilistic �ngerprints for D
shapes and use it to estimate partial similarity. Our approach is complementary to existing
work on shape descriptors and signatures, as we can make use of available shape descrip-
tors to de�ne partial similarity across multiple shapes in arbitrary poses. We compress these
descriptors using a probabilistic hashing scheme motivated by ideas from the database com-
munity. Our �ngerprints are such that if they largely disagree, then we can claim with high
certainty that the corresponding shapes are dissimilar. �is yields an e�cient way to quickly
�lter large shape collections when searching for objects matching a particular model.
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In our approach to partial shape similarity, we �rst cover a given D shape with a large
collection of overlapping patches. Each patch is mapped to a point in a high dimensional
space using a compact, local descriptor that is invariant to rigid transformations. We do not
preserve any information about the relative spatial ordering of the patches. �e shape is thus
mapped to an unordered point set in a high dimensional signature space. We select descrip-
tors that are robust to perturbations, so that patches which are very similar are likely to be
mapped to the same locale of this signature space. �is is important, as similar regions may
not be covered by patches in exactly the same way across two shapes. Clearly, if two shapes
are similar, then the corresponding point sets will have proximal regions in proportion to
the partial similarity between the original objects. However, since we lose relative patch or-
dering, it is possible that two largely di�erent shapes have a signi�cant overlap in signature
space. Statistically this is a rare event and leads to only a few false positives. It is made even
more unlikely by ensuring large overlap between neighboring patches. Motivated by this
intuition, we de�ne similarity between two shapes in terms of the similarity between the
signature sets. Our de�nition is invariant to rigid transforms, handles partial matching, and
is robust to local deformations and articulated motion.

However, these large high-dimensional point sets have high storage requirements and
are di�cult to compare e�ciently. We therefore compress signature information using a
technique called min-hashing [Bro] to generate a short probabilistic �ngerprint for each
signature set. Subsequently, �ngerprints of multiple shapes are compared to estimate simi-
larity between the signature sets, and hence between the original objects. We �rst map the
signatures to a �nite universe of numbers using Rabin’s hashing scheme [Rab]. �en, dur-
ingmin-hashing, we use a randompermutation to assign a complete ordering to all elements
of this �nite universe of numbers. We can think of this ordering as the ranking of an ‘expert’,
asked to evaluate the patches according to her criteria. According to the expert ranking, we
then select the winner among the set of hashed signatures corresponding to an object. For
each object, we collect the winners of m randomly chosen permutations and save them as
the probabilistic �ngerprint of the shape. �e same random permutations are used for all
shapes. �is ensures that patches from di�erent shapes are consistently ordered, according
to each of the m chosen ‘experts’.

We can e�ciently detect if two shapes are similar using our shape �ngerprints. However,
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Figure .: Query Processing. A query object is �rst processed to generate its �ngerprint us-
ing the same parameters used to pre-process the database shapes. Objects with �ngerprints
similar to �ngerprint of the query are returned as possible candidates.

as mentioned before, we may get a few false positive matches. In practice, the number of such
false hits is very small and can be handled by match veri�cation using more expensive partial
similarity methods. Further, we can show that if two �ngerprints are di�erent, then with
high probability the shapes are also di�erent. �us both false positives and false negatives
are bounded.

6.2 RelatedWork

�e problem of shape similarity and retrieval has been extensively studied in computer vi-
sion and graphics. It has been addressed in great detail by the extensive work done by the
Princeton Shape Retrieval and Analysis Group [FKMS]. Meaningful similarity between
two D shapes, partial or whole, has to be invariant to rigid transforms. Global shape de-
scriptors, invariant to rigid transformations, include spherical harmonics [KFR], shape
distributions [OFCD], re�ective symmetry descriptors [KCD+], and Laplace-Beltrami
Spectra [RWP]. Similarity estimation between two models is then reduced to a compar-
ison of the corresponding global shape descriptors. Alternatively, an object can be canoni-
cally oriented using principal component analysis (PCA) and descriptors computed on the
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rotation normalized shape – examples include extendedGaussian images [Hor] and shape
histograms [AKKS].

However, all of these global methods are less suitable for detecting partial matches. �is
problem can be addressed by establishing an explicit correspondence across feature points of
the models to compute a good alignment [GMGP]. Such a solution involves exhaustively
considering the various correspondence assignments and is thus computationally expensive.
Gal and Cohen-Or [GCO] proposed a di�erent method for determining partial similarity
using geometric hashing techniques. Brie�y, in a pre-processing stage, geometric hashing
encodes all the possible candidate transforms in a large hash table. While this approach
is more e�cient, it trades computation time for memory, leading to space requirements of
multiple gigabytes even for moderately complex models.

In a di�erent setting, the problem of identifying text or web documents with partial
similarity has been extensively studied. E�ective solutions to this problem involve clever
combinations of hashing and random sampling techniques [Blo, SGM, Bro]. In these
schemes, a text document is �rst converted to a set of overlapping text segments. Similarity
between two documents is assigned based on the size of the intersection of the segment-sets
which is e�ciently estimated using random sampling techniques. Some of these concepts
motivated our approach. Our problem, however, is signi�cantly more challenging, as digital
D shapes have neither the linear ordering nor the canonical decomposition into discrete
tokens that is exploited in the text document case.

Contributions

We propose a new statistical approach to e�ciently estimate partial or total shape similarity.
We introduce the concept of probabilistic �ngerprints for D shapes, provide a statistical
analysis on its e�ectiveness for partial matching, and show its practical use on a number of
di�erent applications. �e key insight is that the similarity of two shapes can be estimated
by comparing signatures derived from very sparse sets of local patches generated on each
model. Based on probabilistic arguments, we show how to preselect such patches, without
�rst needing to establish explicit correspondence relations between the models. �is approach
produces a �xed-length �ngerprint and avoids costly explicit alignment of the models. Our
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similarity measure is invariant to rigid transforms, robust to perturbations, handles articu-
lations, and most importantly, detects partial matches.

6.3 Shape Fingerprinting

Our goal is to reliably and e�ciently estimate (partial) similarity between two shapes. �e
similaritymeasure should be invariant to rigid transforms and robust to small perturbations.
Here we de�ne such a similarity measure for a restricted class of shapes, namely surfaces in
R3 whose normal is de�ned almost everywhere, e.g., a smooth surface (implicit or explicitly
parameterized) or a triangle mesh. �emeasure is based on surface signatures that allow for
e�ective compression using hashing. We call a hashed signature a �ngerprint and start by
listing the properties we expect in general from a shape �ngerprint.

Fingerprint properties. A probabilistic �ngerprint is a function f that assigns to each ad-
missible shape a �xed size bit string, i.e. a string in {0, 1}m. �emain purpose of �ngerprints
is to allow for e�cient comparison of shapes. Given a de�nition of shape similarity (or dis-
similarity), any meaningful �ngerprint function should have the following properties.

. Given two shapes S1 and S2, we want the following relations to hold with high prob-
ability:

(a) If f (S1) 6= f (S2), then S1 and S2 are dissimilar.

(b) If f (S1) = f (S2), then S1 and S2 are similar.

. �e number of bits m is small compared to the number of bits needed to encode the
actual shapes.

. �e function f is e�ciently computable. Also, whether f (S1) = f (S2) can be quickly
checked.

In the following we describe in detail a �ngerprint and the corresponding notion of sim-
ilarity/dissimilarity it is based on. �e pipeline for computing the �ngerprint is depicted in
Figure ..
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Figure .: Shingle generation. (a) Bρ(pi) is the neighborhood ball for a point pi. (b) �e
selected surface patch (shingle) Ti around pi. (c) �e patch along with the surface normal
at pi. (d) �e normal oriented along the z-axis. (e) Computed spin image for patch Ti.
�e signature is invariant to rigid transforms, and robust to sampling and small surface
perturbations.

Our �ngerprint relies on the concepts of sample, shingle, signature, resemblance, and
hashing. Next we describe these concepts and how we use them for de�ning and computing
a probabilistic �ngerprint.

pi
~



S2

pi



S1



Figure .: Overlapping Shingles. Shingles for two shapes S1 and S2 are computed using
ρ-radius balls spaced roughly δ apart. If p̃i lies in a matching region between S1 and S2,
then with high probability the shingle at p̃i will have a corresponding shingle from S1 with
a signi�cant overlap as ρ  δ.
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Sample. In the �rst step, we generate a set of (approximately) uniformly sampled points
on the input shape S. Let P = {p1, . . . , pn} be the set of sample points with sampling spac-
ing δ. For our �ngerprint to work well we assume that for any p ∈ S, ∃ pi ∈ P such that
‖pi − p‖ ≤ δ. Further, the number of such neighboring points is bounded by a small con-
stant, preventing the sampling from being arbitrarily dense. �ere is a simple and e�cient
process for generating such a sample set: Let A be the surface area of the shape. On the
surface of the object, we randomly place n = dA/πδ2e samples and uniformly spread them
out using particle repulsion [Tur].

Shingles. For each sample point pi ∈ P, we de�ne a neighborhood of radius ρ where
ρ � δ. A surface patch Ti ⊂ S corresponding to point pi is obtained as Ti = S ∩ Bρ(pi)

where Bρ(pi) denotes the ball of radius ρ around pi (Figure .). If multiple components are
present in Ti, we retain only the component containing pi (the surface is assumed to be a
manifold). We refer to these patches as shingles and denote the multi-set of all shingles by
P . Keep in mind that P depends on the sample P. Given two shapes S1 and S2, with high
probability, any shingle from the matching region has a corresponding shingle on the other
shape with signi�cant overlap (Figure .).

Signatures. We compute a signature σi for each shingle Ti ∈ P and denote the multi-set
of all signatures by S . A signature σi is essentially a string that represents a shingle Ti. Any
signature that is invariant to rigid transforms and robust to sampling and local perturbations
can be used to this end. Here we use spin images [Joh] which are de�ned as follows: Let
the surface normal at any sample point pi ∈ P be ni. For any point x in the corresponding
shingle Ti, its spin-map is de�ned as:

(α, β) =
(√
‖ȳ‖2 − 〈ni, ȳ〉2, 〈ni, ȳ/‖ȳ‖〉

)
where ȳ = x− pi. �e spin-image si of Ti is simply the quantized version of the (α, β) space
recording the spin-map of the points of Ti falling into a set of discrete bins (Figure .). Since
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spin images are robust to perturbations, if two shingles have signi�cant overlap then they
are likely to have the same signatures.

Resemblance. Nowwe introduce our similarity/dissimilaritymeasure. Given two surfaces
S1 and S2 we de�ne their resemblance r with respect to their corresponding signatures S1

and S2. Remember that S1 and S2 are multi-sets. For each σ ∈ Si let mi(σ) denote its
multiplicity in Si. �e resemblance of S1 and S2 is de�ned as:

r(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

,

where |S1 ∩ S2| denotes

∑
σ∈S1∩S2

min(m1(σ), m2(σ))

and |S1 ∪ S2| denotes

∑
σ∈S1∪S2

max(m1(σ), m2(σ)).

Since resemblance 0 ≤ r(S1, S2) ≤ 1 is higher when two shapes are similar, we de�ne dis-
tance between shapes as 1− r(S1, S2). Observe that this de�nition is based on the signature
sets, and hence depends on the scale parameter ρ used to de�ne the shingles.

Finally, we want to estimate the resemblance using a much sparser representation for
the shapes than their signatures, namely their �ngerprints. To this end each signature is �rst
hashed into a �nite set U using Rabin’s hashing scheme.

Hashing. Rabin’s hashing scheme [Rab] gives a low collision probability for a �xed bit
budget by working with irreducible degree k polynomials over Z2. Let the number of bits
required to represent a signature be t. For instance, if a spin image is computed using b

bins and each bin is of length l bits, then t is upper bounded by the maximum length of the
spin images which is log(b2l). If Rabin’s hashing scheme h maps each of the n signatures σi
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corresponding to a shingle Ti down to k bits, then the probability of collision is bounded by

Pr[h(σi) = h(σj)|σi 6= σj] ≤ n2t/2k. (.)

For example, if n = 108 and t = 128 then for k = 80 the probability of collision is less than
10−6. �us even with 10 bytes for each signature, we get low collision probability. Further,
Rabin’s hashing scheme can be very e�ciently computed using simple bit arithmetic [Bro,
CL]. For each signature we store only k bits corresponding to the coe�cients of the degree
k polynomial in Z2. We denote the universe of all k-bit numbers by U and we denote the
multi-set of all hashed signatures as I .

We can de�ne the analog of our resemblance function r for multi-sets of hash values as

r′(S1, S2) =
|I1 ∩ I2|
|I1 ∪ I2|

,

where Ii is themulti-set of hash values corresponding to surface Si. Evaluating this function
instead of r(S1, S2) remains impractical, as the involved multi-sets are still too large even
though we need less bits to store their elements than we need to store the original signatures.
Moreover, set operations between these large unordered multi-sets require O(ni log ni) time
where ni is the number of set elements. As a solution, we further compress each of the
multi-sets I of hash values to generate a small �ngerprint. �is is done by min-hashing
using random permutations on the universe U .

Probabilistic Fingerprint. Let π1, . . . , πm be m random permutations on U , the universe
of k-bit numbers. Intuitively, each permutation is like an ‘expert’ assigning an ordering to U
according to her criteria. Given amulti-set I of hash valueswe use the randompermutations
πi to compress the set as follows: We replace themulti set I by the length m sequence of k-bit
strings obtained as

f (S) = (min{π1(I)}, . . . , min{πm(I)}) ,

where the corresponding multiplicities are propagated in the obvious way. �is sequence is
our de�nition of a �ngerprint for a surface S. To generate the permutations πi, we apply -
universal hashing [MR] as an approximation for random permutations, using a random
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pair of numbers as parameters.

Based on the �ngerprints we estimate the resemblance r(S1, S2) by

r̂(S1, S2) =
∑m

j=1 min(m1j, m2j)χ
(

f (S1)j = f (S2)j
)

∑m
j=1 Dj

,

with

Dj = max(m1j, m2j)χ
(

f (S1)j = f (S2)j
)
+m1jχ

(
f (S1)j < f (S2)j

)
+ m2jχ

(
f (S1)j > f (S2)j

)
where χ(·) is the indicator function taking value 1 if the condition of its argument evaluates
to true, and 0 otherwise. For the surface Si, the j-th component of its �ngerprint is f (Si)j

with multiplicity mij. When the �ngerprint consists of strings with all multiplicities equal
to one, the resemblance estimate reduces to r̂(S1, S2) = ∑j χ

(
f (S1)j = f (S2)j

)
/m. Notice

that to compare two �ngerprints, we simply need to compare them element-wise without
any need to solve for correspondences.

In the next sectionwe show that choosing a large enoughm gives, with high probability, a
good estimate of resemblance. In practice m ≈ 1000 is su�cient and hence the probabilistic
�ngerprints, in the order of 10KBytes, are very compact.

6.4 Analysis

In this section we analyze the performance of our �ngerprints — as mentioned before our
goal is to approximate the resemblance of two surfaces e�ectively and e�ciently.

Rabin’s hashing scheme maps any signature σ to a number with bit length k. �is map-
ping obviously results in some collisions that can be quanti�ed as:

σi = σj ⇒ h(σi) = h(σi)

σi 6= σj ⇒ Pr[h(σi) = h(σj)] ≤ p, (.)

where p is n2t/2k, see Equation .. Let S1 and S2 bemulti-sets of signatures for the surfaces
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S1 and S2, respectively. Let

A = S1 ∩ S2, B = S1 \ S2, and C = S2 \ S1,

where the set operations again are de�ned in the multi-set setting, i.e. the \ operation re-
spects the multiplicities. We can relate a = |A| (size of a multi-set is the sum of the mul-
tiplicities of its elements), b = |B|, and c = |C| to the resemblance of S1 and S2 as follows:

r(S1, S2) = a/(a + b + c). (.)

Let I1 and I2 denote themulti-sets of hashed signatures for S1 and S2, respectively. Hav-
ing set the terminology we now quantify the errors incurred by Rabin’s hashing scheme.

Using Equation . and the de�nitions of a, b, and c in expectation we get:

a ≤ |I1 ∩ I2| ≤ a + d

a + b + c− d ≤ |I1 ∪ I2| ≤ a + b + c,

where d = (2bc + ac + ab)p is obtained by a simple union bound argument: For any ele-
ment in B the probability to participate in a collision that a�ects the set operations is upper
bounded by (a + c)p. �us by linearity of expectation the expected number of such colli-
sions contributed by B is upper bounded by (a + c)bp. Similarly, the expected number of
collisions contributed by C is upper bounded by (a + b)cp. Adding these two bounds gives
the bound d.

For the approximation quality of the resemblance by r′(S1, S2) = |I1 ∩ I2|/|I1 ∪ I2| we
get in expectation the following bounds:

r(S1, S2) =
a

a + b + c
≤ r′(S1, S2) ≤

a + d
a + b + c− d

.

Crucial is only the upper bound which we can also write as

a + d
a + b + c− d

=
r(S1, S2) + ε

1− ε
,

if we set ε = d/(a + b + c). By increasing k, i.e. the number of bits each signature gets
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mapped to, we can make ε arbitrarily small. For small enough ε and assuming r(S1, S2) > 0

we get in expectation

r′(S1, S2) ≤
r(S1, S2) + ε

1− ε
≤ (r(S1, S2) + ε)(1 + ε)

≤ r(S1, S2)(1 +
√

ε).

Using Markov’s inequality [Fel] this yields

Pr[r′(S1, S2) ≥ λ(1 +
√

ε)r(S1, S2)] (.)

≤ Pr[r′(S1, S2) ≥ λE[r′(S1, S2)]]

≤ 1/λ.

Finally, we have to check how our estimate behaves under the random permutations that
we used to compute the �ngerprints. When all the strings havemultiplicities one, we use the
following fact, see [Bro],

Pr[ f (S1)j = f (S2)j] = r′(S1, S2),

for all j = 1, . . . , m. Hence estimating r′(S1, S2) by using m random permutations is equiv-
alent to performing m coin tosses to evaluate the bias of the coin. Using strong Cherno�
bounds we can bound the estimated resemblance r̂(S1, S2) as

Pr[(1− δ)r′(S1, S2) ≤ r̂(S1, S2) ≤ (1 + δ)r′(S1, S2)] ≥ 1− η, (.)

if m ≥ 4 ln(2/η)/(δ2r′(S1, S2)).

Combining our probabilistic bounds by taking a union bound for the event we dealt with
in Equation . and the complement of the event we dealt with in Equation . we conclude
that

(1− δ)r(S1, S2) ≤ r̂(S1, S2) ≤ λ(1 + δ)(1 +
√

ε)r(S1, S2)

with probability at least 1− (η + 1/λ). �at is, with high probability r̂(S1, S2) is very close
to r(S1, S2). �e analysis can be easily extended for multi-sets giving us a similar result.
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model  uniform spin Rabin min
vts. samp. image hash hash

skull k . . . .
Caesar k . . . .
bunny k . . . .
horse k . . . .

Table .: Performance. Timing in seconds for the di�erent stages of the �ngerprint com-
putation (m = 1000) on a 3 GHz Pentium 4 with 2GB RAM. Caesar and bunny refer to the
complete models. Average query time is roughly 15msec.

Observe that the sizem of the �ngerprint depends on the desired con�dence in our estimated
resemblance.

6.5 Results and Applications

We have implemented the framework shown in Figure .. Along with each �ngerprint, we
store some additional header information: a seed for the random number generator, sample
spacing δ, shingle radius ρ, parameters for computing spin-images, and k, the degree of the
polynomial used in Rabin’s hashing scheme. �e choice of these parameters is not critical
for the success of our scheme provided the conditions given in Section . are satis�ed.
However, we can only compare �ngerprints computed using consistent sets of parameters.
Typical time requirements for the various stages are shown in Table ..

Partial Matching. Our scheme is tailored to detect partial matches e�ciently. In an ex-
periment we take a bust of Caesar along with its three partial scans (Figure .). �e trian-
gulations of the models are very di�erent and thus test the robustness of our scheme. For
eachmodel, we independently compute their probabilistic �ngerprint. �en, for eachmodel
pair, we compute its resemblance using the corresponding �ngerprints (shown in black). For
comparison, we compute the ground truth resemblance (shown in yellow) via spin image
signatures. Since our resemblance measure is symmetric, the di�erence between diagonally
opposite elements in the resemblance matrix quanti�es our estimation error.
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Figure .: Resemblance between Partial Scans. In black, resemblance (in ) computed us-
ing �ngerprints. In yellow, approximate ground truth computed from spin-images. Our
resemblance de�nition being symmetric, di�erence between diagonally opposite elements
quanti�es the corresponding estimation error.

Articulated Motion. Resemblance, as measured by our scheme, is robust to articulated
deformations. If large chunks of a model are rigidly deformed across two poses, then the
corresponding shingles and their hashed descriptors are also preserved. Results on two ar-
ticulated poses of a horse model are shown in Figure .. �e size of the shingle, determined
by ρ, a�ects the resemblance score: smaller ρ gives higher resemblance and vice versa. �e
ground truth (yellow curve), determined using the spin-image signatures, is within ±5% of
our estimated values.

Automatic Scan Alignment. �e problem of automatic scan alignment has been previ-
ously addressed by Huber and Hebert in [HH]. �eir system can be made signi�cantly
faster using our scheme. We explain our method with reference to scans (in arbitrary initial
orientations) of the Stanford bunny (Figure .). In the pre-processing stage, for each of
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the ten scans, we independently compute its �ngerprint. Now for each pair of models, we
estimate their resemblance using the respective �ngerprints and store the edge joining that
pair in a heap with the largest element on top. We then extract the top edge, try to explicitly
align the corresponding patches using a global aligner [GMGP], and if the alignment is
not valid we just pick the next largest edge. If an alignment is valid, we merge the respec-
tive patches, and need to compute the �ngerprint for the merged patch. However, given two
patch �ngerprints (a1, . . . , am) and (b1, . . . , bm), we can very e�ciently estimate the �nger-
print for the merged scan simply as (min(a1, b1), . . . , min(am, bm)) without explicitly com-
puting the �ngerprint for the merged scans. Using this estimated �ngerprint, the heap can
be e�ciently updated by re-evaluating only the a�ected edges. In the �gure, the number
of required global registration or veri�cation steps are shown in parenthesis. Since global
registration is much more costly compared to �ngerprint matching, our method, by quickly
pruning away non-matching scans, greatly speeds up the whole process.

Adaptive Feature Selection. As shown previously, we can even identify shapes that match
only partially. However, with a bit more e�ort we also get very good hints about regions of
overlap. While comparing two �ngerprints, we identify the min-hashes that agree and map
them back to the original surface shingles. �e union of these shingles give us a very good
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Figure .: Resemblance between Articulated Shapes. �e yellow ball shows a neighborhood
with ρ = 10 used for de�ning shingles. At low values of ρ, we get a high resemblance, since
the e�ect of articulation is felt only by few of the shingles. As ρ increases, resemblance goes
down. In yellow, we show the ground truth.
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estimate of the region of overlap (Figure .). Subsequent global registration algorithms
bene�t signi�cantly from this stage, since the adaptive feature points, given by matching
shingle patches, very likely lie in areas of overlap and have correct correspondences. In
cases when �ngerprints are computed independently, we can similarly identify potential
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Figure .: Automatic Scan Alignment. Given ten initial scans of the Stanford bunny in arbi-
trary poses, for each scan we compute its probabilistic �ngerprint with m = 1000. Scan pairs
with highest resemblance are picked, and then using [GMGP] their alignment veri�ed. If
the scan-pair align, the �ngerprint for the merged scan is estimated. �e process continues
until no more scans can be combined. �e number of required global alignment steps is
shown in parenthesis.
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(a) (b) (c) (d)

Figure .: Adaptive Feature Point Selection. (a) Two shapes in arbitrary poses. (b) For each
scan, black and yellow balls denote shingle centers chosen by min-hash. In yellow, shingle
centers whose min-hashes agree across the two models. (c) Hints about possible overlap
regions obtained by mapping matching min-hashes back onto the objects. �ese are used
for adaptive feature point selection. (d) Final alignment using chosen feature points. �e set
of features with correct correspondence is shown in yellow.

overlap regions across multiple shapes, if we additionally store shingle locations for the min-
hashed patches along with the �ngerprints. Timing complexity and storage requirements
still remain O(m).

In order to identify partial complementary matches between two shapes Si and Sj, we
can use a similar method. �e �ngerprint for Si is computed as usual. For Sj, when com-
puting spin-images, we �ip the point normals to take care of complementary shapes. More
generally, for each shape we can compute its �ngerprints and its complement �ngerprint. A

Scan A Scan B Final Alignment

Figure .: Complementary Shapes. Given two complementary scans in arbitrary poses, we
�nd their alignment using our adaptive feature selection. To detect complementary shapes,
�ipped normals are used for computing �ngerprint of scan B.
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Figure .: Database Classi�cation. Shape classi�cation result according to our proba-
bilistic �ngerprints. Given any two shapes Si and Sj, distance between them is de�ned as
1− r(Si, Sj). Using this notion of distance, we compute the full distance matrix for a database
of shapes. �e 2D projection of the �ngerprint shape space is computed using classical multi-
dimensional scaling (MDS).

possible application is automatic alignment of broken fragments as shown in Figure .. In
this special scenario, using prior information, the �at surface of the scans can be automati-
cally removed as proposed by Huang et al. [HFG+] as these regions are known not to be
in overlap areas.

Database Classi�cation and Retrieval. We use resemblance between pairs of shapes to
e�ciently classify a shape database and retrieve models from it (Figure .). Our database
comprises of models, in arbitrary initial positions, from the Princeton shape benchmark
[FKMS]. For each shape, we �rst compute its �ngerprint. A shape distance matrix is then
build using 1− r(Si, Sj) as the distance between any pair of shapes Si and Sj. We extract a 2D
embedding of the �ngerprint shape space using multi-dimensional scaling [CC] on the
computed distance matrix. Figure . shows a selection of models in the embedded shape
space. We get meaningful clustering of shapes even in the presence of articulations and par-
tial matches. A typical query result from the processed database is shown in Figure ..
�e resemblance scores for this query with any of the tables, planted pots, furniture, or car
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models is less than 2%. Most of the models in our database being degenerate meshes, we
expect a volumetric representation coupled with a suitable signature like spherical harmon-
ics [KFR] will further improve our performance. Our method is in complement with
existing algorithms for shapematching and hence we can use many of the popular shape de-
scriptors in our framework. However, a careful study has to be done to fully evaluate these
bene�ts of our algorithm.

Mesh Authentication. Our scheme can bemodi�ed for authenticating geometric models.
In the signature computation phase we increase the number of bins making the spin-images
sensitive to minor perturbations. �en given a mesh and a partially modi�ed copy, we can
use �ngerprints to probabilistically identify regions that remain unchanged. For example, if
we compute such fragile �ngerprints for the original skull model and one corrupted with 1%

(of the bounding box) noise, their resemblance is 1.8%. However, if we reorder the vertices,
or apply any rigid transform to the original mesh, the resemblance is almost 100%. Local de-
formations or partial matches can be detected as before. Moreover, for authentication, only
a small �ngerprint needs to be transmitted and compared with the �ngerprint computed
from a copy of the mesh. Further investigation needs to be done for quantifying immunity
against other types of attacks [WC].

6.5.1 Improvements and Limitations

Rabin’s method can hash similar signatures to very di�erent values. Such error can be re-
duced by using locality sensitive hashing (LSH) [IMRV] where probability of collision
between any two signatures is inversely related to their distance. In practice, this may im-
prove the resemblance estimates.

As seen in Figure ., in some cases the scale ρ has a signi�cant e�ect on resemblance. To
deal with this, we can compute amulti-scale �ngerprint over ν di�erent choices of ρ. Storage
requirement increases ν fold.

In the current form, we cannot handle scaling. �ough pre-scaling of objects may be
done using anisotropic scaling [KFRa], such a method fails for partial similarities. We are
currently researching other possibilities to handle this scenario.
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59% 33% 26%

24% 19% 15%

query

Figure .: Database Retrieval. Given a query shape, we show the models retrieved by our
algorithm from a database of shapes in arbitrary poses. Our scheme handles partialmatches,
and is robust to articulations. Corresponding resemblance scores are shown.

6.6 Summary

In this chapter, we showed how to build compact probabilistic �ngerprints for digital ge-
ometry models that allow e�cient model comparison for partial or total similarity. It is
interesting that our scheme relies on randomness for selecting the ‘shape features’ through
the presence or absence of which similarity is estimated. We give provable bounds on the
quality of our shape comparisons demonstrating the power of randomization in a geometric
context.
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7
Conclusions

It is good to have an end to journey toward; but it is the journey that matters.

— Ursula K. LeGuin

�is chapter concludes this thesis with a summary of principal contributions and some
thoughts about extensions of this work and future research.

�e underlying theme of the thesis has been to estimate inter and intra model similarity
with applications to a variety of geometry processing problems. �e techniques mainly rely
on gathering evidence from local geometry to infer about global properties of objects. �e
use of randomization gave us output sensitive algorithms with running time related to the
con�dence we want in our �nal results.

7.1 Principal Contributions

In the context of geometry processing of D geometry, the main contributions of this thesis
are:

• A distance metric based algorithm for partial alignment of D models in arbitrary
initial poses.

• A squared distance �eld based optimization procedure for re�ning partial alignment
of model pairs.


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• A framework for shape completion using geometric priors.

• An algorithm for partial and approximate symmetry detection for D geometry.

• Probabilistic �ngerprints as a compact representation of D models and useful for
partial similarity estimation.

7.2 FutureWork

An obvious extension of this work is to deploy our shape registration and completion tools
for acquiring D geometry in massive scale. Example of such large scale scanning include
scanning of city blocks [FZ], historic artifacts [LPC+]. �e acquired models can then
be used towards planning and restoration projects. Related e�orts are also being made in
the Google City Block project and Microso
 Virtual Earth.

Such large scale data acquisition will lead to a demand for better classi�cation or group-
ing of captured shapes. In this thesis we explored some related questions about model re-
duction, compact shape representation using randomization techniques. �e compactness
of the proposed shape �ngerprints may also enable distributed geometry processing tasks in
sensor network settings, where geometry acquisition, storage, and retrieval may be required
over geographically dispersed deployments.

�e tools described in this thesis can be combined in several ways to form various inte-
grated systems. One possible application is in reverse engineering and inventory control. At
present, almost all major automobile manufacturers maintain a digital collection of model
parts along with physical parts. While reverse engineering some model parts it is important
to reuse as much prefabricated or predesigned parts as possible. To this end one can do the
following: Get several partial scans of the object. Using global and local alignment, stitch
the scans together to get one consistent model. Minor holes or regions of missing data can
then be consolidated using our method of geometric prior based shape completion. Finally
we can compute probabilistic �ngerprints for the consolidated models and look for objects
with partial matches in the model repository. Once we get a set of candidate models, we
can verify the matches using our global registration algorithm. From a consumer point of
view, a similar system can be used for searching hardware catalog for replacement parts for
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a broken part poorly scanned using a cheap scanner.
Similar methods can be employed for face recognition for security reason, or for au-

tomated surveillance and detection of suspicious objects entering a region of interest. All
these applications can be made robust by incorporating higher level information about the
scanned objects – symmetries and structure of detected symmetries are examples of such at-
tributes. Further research needs to be conducted in this area with rigorous testing on range
data of various quality and resolution to evaluate the bene�ts of such methods.

Better understanding of shape similarity and formalizing the concept of a distancemetric
for shapes will help us to better understand the shape space. Such a space can prove to be
very useful for animating, deforming or even editing D shapes.

We are also interested in applying these algorithms for data analysis on other forms of
information like motion sequences [ZMCF], protein folding sequences [Ste, Doo],
time series data [SS], etc. It may be interesting to extend the techniques to high dimen-
sional data where pattern identi�cation is not trivial. A possible such data source is the
-dimensional Mumford data set [MLP] generated from a natural image database.
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A
Quality of Fit

In Chapter , in the data classi�cation stage, we estimate quality of scanned data. In this
section we brie�y describe our approach. More discussion on this topic can be found in
[PMG].

�e quality-of-�t estimate cλ
i is derived from weighted covariance matrix

Ci = ∑
j
(pj − pi)(pj − pi)Tφi(‖pj − pi‖),

where the weight function φi is the compactly supported fourth order polynomial

φi(r) =

1− 6r2 + 8r3 − 3r4 r ≤ 1

0 r > 1

with r = ‖pj − pi‖/hi. �e support radius hi de�nes the geometric scale at which the data
is analyzed. Comparable results are obtained using truncated Gaussians, or similar positive,
monotonously decreasing weight functions. Let λ1

i ≤ λ2
i ≤ λ3

i be the eigenvalues of Ci. �e
normalized weighted least squares error of the best tangent plane estimate can be derived
as λi = λ1

i /(λ1
i + λ2

i + λ3
i ) [PMG]. Since λi = 0 indicates a perfect �t and λi = 1/3

denotes the worst possible distribution, we de�ne cλ
i = 1− 3λi. We measure local sampling

uniformity as the ratio cσ
i = λ2

i /λ3
i . cσ

i = 0 means that all samples in the support of φi lie on
a line (see outliers in Figure .), whereas cσ

i = 1 indicates a uniform distribution of samples


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around pi. Points on the boundary will be assigned intermediate values.



B
Theoretical Analysis

In this section, we provide probabilistic bounds on the sampling requirements of our sym-
metry detection algorithm presented in Chapter . More precisely, we de�ne conditions on
the sample set P and the number n′ = |P′| with P′ ⊂ P of random samples required to �nd
a symmetry of a certain size with high probability.

Suppose we are given a smooth manifold surface O with a symmetric patch S ⊆ O and
a partial symmetry transformation T ∈ Γ, such that S′ = T(S) ⊆ O. For conciseness of
the exposition, we restrict the derivations to the group of rigid transformation, i.e., ignore
uniform scaling. �e analysis extends in a natural way, however. Assume P = {p1, . . . , pn}
is an ε-sampling of the surface O, i.e., for every point x ∈ O there exists a sample p ∈ P

such that |pi − x| < ε f (x), where f (x) denotes the local feature size at x, i.e., the smallest
distance of x to the medial axis of O (see [AB]).

For a given sample pi ∈ P ∩ S, let q ∈ S′ be the symmetric point of pi on the surface,
i.e., q = T(pi). In general, this point will not be part of the sample set, i.e., q /∈ P. However,
we can show that there exists a point pj ∈ P such that pj = Tij(pi) and ||∆T|| = ||T− Tij||
is small.


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Let Fq = [nq cq,1 cq,2] denote the local frame at q spanned by the normal and the
principal curvature directions (see Section .). �en the transform mapping pi 7→ q can
then be expressed as a rotation R = FqF−1

pi
followed by a translation t = q−Rpi. Since P is

an ε-sampling ofO, ∃ pj ∈ P such that |pj−q| < ε f (q). Using results from [AB, CSM]
it follows that if ε < 0.08, ||Fq − Fpj || ≤ c1ε where c1 is a constant depending on the radius
of the ball used for estimating the curvature tensor. Let Tij = (R′, t′) denote the transform
mapping pi 7→ pj. Using the previous relations and the triangle inequality one can show
that

||∆T||2 = ||R− R′||2 + β||t− t′||2 ≤ c2
2ε2,

where c2 is a constant depending on c1, β and the diameter of O.

Due to the stability of local signatures on a smooth surface [MHYS], we can choose
a small ∆σ so that ∆σij = ‖σpi − σpj‖ < ∆σ when |pj − q| < ε f (q). In other words, the
signatures of pi and pj are su�ciently similar for our pairing algorithm of Section .. to
group these points and compute their transformationTij as a sample point in transformation
space Γ. At the same time this transformation is close to the unknown transformation T,
hence Tij provides reliable evidence for the symmetry relation that we want to �nd. �us
if we choose a clustering radius h larger than c2ε it follows that for any point pi ∈ S, our
algorithm will deposit at least one point in Γ within distance h of T. If m is the number
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of points in P ∩ S, then for any random sample from P we get a vote within h of T with
probability p = m/n.

Using the Cherno� bound [MR] we can show that if n′ points are independently and
randomly chosen from P, then with probability greater than 1− α there will be at least k

points within h of T in Γ, where

k =
(

1−
√
−2 log α/n′p

)
n′p

and α ∈ (0, 1). Until nowwe have shown that with high probability a cluster of height at least
k that includes the transformation T will appear in Γ. To complete the analysis, we now need
to ensure that this cluster is in fact a pronounced local maximum of the transformation den-
sity function and will thus be successfully retrieved by the mean-shi
 clustering algorithm.
We prove this claim using a counting argument on Γ partitioned into a set of bins.

Suppose the average number of neighbors in Ω for a query radius of ∆σ is µ. �en n′

random samples results in roughly M = µn′ points in Γ. Let the maximum extent along
any dimension in Γ be L. So partitioning Γ using a grid of size 2h results in N = (L/2h)d

bins, where d represents the dimension of Γ. It is easy to see that if there are more than k

points within h of T, at least one bin of Γ will contain at least k/2d samples. Assuming that
point pairs that are not related by any meaningful symmetry relation map to a random bin
in Γ, we observe that our scenario is identical to M balls being independently and uniformly
thrown into N urns. It is known that the maximum number of balls in any urn with high
probability is given by [Gon, MS]

E(n′, µ, ∆σ) = log N/ log(N log N/M).

In order for the bin corresponding to T to stand above the noise level, we select n′ such that
the following inequality holds:

E(n′, µ, ∆σ) <
(

1−
√
−2 log α/n′p

)
n′p/2d. (b.)

�us if wemark a bin in Γ as interesting only if its height is more than k/2d then: () with
probability 1− α a bin corresponding to the desired transformation T is correctly marked,
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and () only a few bins corresponding to spurious transforms are falsely marked. �ese
outlier bins are easily pruned away in the veri�cation step.

Requiring an ε-sampling with ε < 0.08 for P is a fairly severe restriction. While algo-
rithms exists for computing such a point set for a given smooth surface [BO], the sampling
density would be prohibitively high. As commented in [AB], empirical evidence suggest
that these bounds are quite conservative. In practice, we successfully found the existing sym-
metries using a much less restricted sampling. Consider the example of Figure ., where
d = 6, L/h ≈ 20, and µ = 10. If we hypothetically assume our initial point set P satis�es
the sampling requirements stated above (which is clearly not the case since the surface is not
even smooth), then Equation b. prescribes n′ ≈ 300 to detect a global symmetries where
p = 0.5 with probability more than 95%. We found that even with only 100 samples we
can reliably detect the global re�ective symmetry of the castle (see Figure .). Observe that
as the size of the symmetric patch becomes smaller, i.e., p decreases, Equation b. suggests
higher values for n′. Also note that while our analysis has been restricted to perfect sym-
metries, it can easily be extended to approximate symmetries by increasing h and thereby
decreasing the number of bins N.
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